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Abstract

Diverse Polycomb repressive complexes 1 (PRC1) play essential roles in gene regulation,

differentiation and development. Six major groups of PRC1 complexes that differ in their

subunit composition have been identified in mammals. How the different PRC1 complexes

are recruited to specific genomic sites is poorly understood. The Polycomb Ring finger pro-

tein PCGF6, the transcription factors MGA and E2F6, and the histone-binding protein

L3MBTL2 are specific components of the non-canonical PRC1.6 complex. In this study, we

have investigated their role in genomic targeting of PRC1.6. ChIP-seq analysis revealed

colocalization of MGA, L3MBTL2, E2F6 and PCGF6 genome-wide. Ablation of MGA in a

human cell line by CRISPR/Cas resulted in complete loss of PRC1.6 binding. Rescue exper-

iments revealed that MGA recruits PRC1.6 to specific loci both by DNA binding-dependent

and by DNA binding-independent mechanisms. Depletion of L3MBTL2 and E2F6 but not of

PCGF6 resulted in differential, locus-specific loss of PRC1.6 binding illustrating that different

subunits mediate PRC1.6 loading to distinct sets of promoters. Mga, L3mbtl2 and Pcgf6

colocalize also in mouse embryonic stem cells, where PRC1.6 has been linked to repression

of germ cell-related genes. Our findings unveil strikingly different genomic recruitment

mechanisms of the non-canonical PRC1.6 complex, which specify its cell type- and context-

specific regulatory functions.

Author summary

Polycomb group proteins assemble in two major repressive multi-subunit complexes

(PRC1 and PRC2), which play important roles in many physiological processes, including

stem cell maintenance, differentiation, cell cycle control and cancer. In mammals, six dif-

ferent groups of PRC1 complexes exist (PRC1.1 to PRC1.6), which differ in their subunit

composition. The mechanisms that target the different PRC1 complexes to specific geno-

mic sites appear diverse and are poorly understood. In this study, we have investigated the

genomic targeting mechanisms of the non-canonical PRC1.6 complex. In PRC1.6, the

defining subunit PCGF6 is specifically associated with several proteins including the
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transcription factors MGA and E2F6, and the histone-binding protein L3MBTL2. We

found that MGA is absolutely essential for targeting PRC1.6. MGA executes recruitment

of PRC1.6 to its target sites through two distinct functions. On the one hand it acts as a

sequence-specific DNA-binding factor; on the other hand it has a scaffolding function,

which is independent of its DNA binding capacity. E2F6 and L3MBTL2 are also impor-

tant in genomic targeting of PRC1.6 as they promote binding of PRC1.6 to different sets

of genes associated with distinct functions. Our finding that different components specify

loading of PRC1.6 to distinct sets of genes could establish a paradigm for other chroma-

tin-associated complexes.

Introduction

Polycomb group (PcG) protein complexes play crucial roles in many physiological processes,

including stem cell maintenance, differentiation, cell cycle control and cancer [1–4]. PcG com-

plexes repress transcription through various mechanisms including changes in histone modifi-

cation, polynucleosome compaction and direct interaction with the transcription machinery

[1,5]. Two major complexes exist in mammals, the Polycomb repressive complexes 1 and 2

(PRC1 and PRC2), which differ in their enzymatic activity. PRC1 contains the E3 ligase

RING1/2, which catalyzes ubiquitination of histone H2A at lysine 119 (H2AK119ub1), while

PRC2 contains the methyltransferase EZH2 (Enhancer of Zeste Homolog 2) that catalyzes tri-

methylation of histone H3 (H3K27me3). It has long been considered that H3K27me3 is

required for PRC1 binding to chromatin. However, this view was challenged when it was

found that a number of PRC1 complexes exist, which lack H3K27me3-binding CBX (Chromo

Box) subunits [6–9].

Six major PRC1 complexes have been described and each contains a defining PCGF (Poly-

comb Group Ring Finger) subunit (PCGF1-6), the RING1/2 E3 ubiquitin ligase, RYBP/YAF2

(RING1 and YY1 binding protein/YY1 Associated Factor 2) or a CBX protein, and a unique

set of associated proteins [7,8]. The canonical PCR1 complexes are PRC1.2, which contains

PCGF2 (MEL-18), and PRC1.4, which contains PCGF4 (BMI1). They are recruited to chroma-

tin by the H3K27me3 mark deposited by PRC2. By contrast, the non-canonical (ncPCR1s)

PRC1.1, PRC1.3, PRC1.5 and PRC1.6 are targeted to chromatin by H3K27me3-independent

mechanisms. Significantly, ncPRC1s are responsible for H2A ubiquitination (H2AK119ub1),

which leads to recruitment of PRC2 and downstream H3K27me3 deposition [10].

Our knowledge of the targeting of ncPRC1 complexes to their genomic sites is limited. The

PCGF1-containing PRC1.1 variant is recruited to non-methylated CpG islands via the histone

methyltransferases Kdm2b (Lysine (K)-specific demethylase 2b), which binds to non-methyl-

ated CpG islands [6,9]. Recruitment of the PCGF3/5-containing ncPRC1s to the inactive X-

chromosome is mediated by the Xist-RNA [11].

The subunit composition of the different ncPCR1s is specific and potentially revealing.

While PRC1.6 (also known as E2F6-PRC1 and PCGF6-PRC1) is similar if not identical to

L3MBTL2 (Lethal(3)Malignant Brain Tumor-Like 2)-containing complexes [12,13] and the

E2F6 repression complex [14], it is specifically associated with several proteins that are not

found in other ncPRC1s (Fig 1A), [7,15]. MGA (MAX Gene-Associated protein, also abbrevi-

ated as MGAP by UniProt) contains two DNA-binding domains, a T-box domain and a

bHLH (basic helix-loop-helix) domain. MGA interacts with MAX (Myc-associated Factor X),

and E2F6 interacts with DP-1 or DP-2 (transcription factor DP-1 or DP-2). Heterodimeric

MGA/MAX binds E-boxes, and heterodimeric E2F6/DP-1/2 binds to E2F recognition se-

quences in vitro [16–18]. L3MBTL2 contains four MBT domains that bind to mono- and di-
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methylated histone H3 and H4 tails in vitro [19–21]. Full-length L3MBTL2 can also interact

with histones independent of their lysine methylation state [12,20]. The association of PRC1.6

with the sequence-specific DNA binding proteins MGA/MAX and E2F6/DP1, and with the

histone-interacting protein L3MBTL2 suggests that these proteins could play a role in locus-

specific recruitment of PRC1.6. Crucially, this notion has not been addressed experimentally.

In mouse embryonic stem cell (ESC) an essential role for the corresponding PRC1.6 sub-

units in specification and proliferation has been demonstrated. Mga and Pcgf6 were identified

as essential self-renewal genes in ESCs by a genome-wide RNAi screen [22]. A more recent

knockout study revealed that Mga is essential for survival of mouse pluripotent cells during

peri-implantation development and for growth of ESC cultures [23]. L3mbtl2-deficient ESCs

retain characteristics of pluripotent cells but are severely impaired in proliferation [13]. Finally,

the defining subunit of PRC1.6, Pcgf6, is expressed at high levels in mouse ES cells, where it is

required for ESC identity [24,25]. The mechanism by which this occurs remains controversial.

Two reports suggested a repressive function of Pcgf6 on mesodermal-specific [24] and on

endodermal lineage genes [26], while Yang et al. suggested an PRC1.6-independent direct acti-

vator function of Pcgf6 on core ESC regulators such as Oct4, Sox2 and Nanog [25].

Here we describe the targeting mechanism of PRC1.6, an exemplar of the non-canonical

PRC1 class, by detailing the role of MGA, L3MBTL2, E2F6 and PCGF6 in genomic binding site

selection. We show that MGA, L3MBTL2, E2F6 and PCGF6 colocalize genome-wide in the

context of PRC1.6. Taking advantage of CRISPR/Cas-mediated genetic ablation in HEK293

cells, we demonstrate that MGA is absolutely essential for binding of PRC1.6. By expression of

MGA mutants in MGAko cells, we found that the bona fide T-box and bHLH DNA-binding

domains of MGA mediate binding to a subset of loci but are dispensable for others. We further

demonstrate that L2MBTL2 and E2F6 determine differential binding of PRC1.6 to distinct pro-

moters. Finally, we demonstrate that Mga, L3mbtl2 and Pcgf6 colocalize also in mouse ESCs. In

particular, we found enrichment at promoters of meiosis-and germ-line-specific genes that

were shown to be de-repressed on Max-, L3mbtl2- or Pcgf6-depletion. Together, our findings

unveil strikingly different genomic recruitment mechanisms for a non-canonical Polycomb

repressive complex, which specify its cell type- and context-specific regulatory functions.

Results

Genomic colocalization of MGA, L3MBTL2, E2F6 and PCGF6 in HEK293

cells

To identify the genomic binding sites of PRC1.6 and to gain mechanistic insights into its tar-

geting, we focused on the roles of MGA, L3MBTL2, E2F6 and PCGF6 as these factors are

Fig 1. MGA, L3MBTL2, E2F6 and PCGF6 colocalize in 293 cells. (A) Schematic representation of PRC1.6 core components. (B) Western blot analysis

of MGA, L3MBTL2, E2F6 and PCGF6 expression in wild type 293 cells (wt) and in corresponding MGA-, L3MBTL2-, E2F6- and PCGF6-depleted cell

clones (MGAko, L3MBTL2ko, E2F6ko and PCGF6ko). Re-probing for tubulin (TUB) controlled loading of extracts. (C) Venn diagrams showing the

overlap of MGA, L3MBTL2, E2F6 and PCGF6 binding regions in HEK293 cells. The total number of high-confidence MGA, L3MBTL2, E2F6 and

PCGF6 ChIP-seq peaks (�30 tags,�3-fold enrichment over knockout control) and their overlap is shown. (D) A heat map view of the distribution of

union MGA, L3MBTL2, E2F6 and PCGF6 peaks in HEK293 cells (n = 8342) at +/- 2 kb regions centred over the MGA peaks. (E) Representative genome

browser screenshots of a 0.7 Mb region of chromosome 19 showing co-localization of MGA, L3MBTL2, E2F6 and PCGF6 at the CTC-232P5.1, RFX2,

MLLT1 and KHSRP promoters. (F) Distribution of MGA, L3MBTL2, E2F6 and PCGF6 peaks relative to positions -2000 bp upstream to +2000 bp

downstream of gene bodies. TSS, transcription start site; TES, transcription end site. (G) ChIP-qPCR analysis of MGA, L3MBTL2, E2F6 and PCGF6

binding to selected promoters. The region -2 kb upstream of the CDC7promoter served as a negative control. Percent of input values represent the mean

of at least three independent experiments +/- SD. (H) Sequence motifs enriched in PRC1.6 binding regions. Logos were obtained by running

MEME-ChIP with 300 bp summits of the top 600 union MGA-L3MBTL2-E2F6-PCGF6 ChIP-seq peaks. The numbers next to the logos indicate the

occurrence of the motifs, the statistical significance (E-value) and the transcription factors that bind to the motif. Right panel, local motif enrichment

analysis (CentriMo) showing central enrichment of the MGA/MAX bHLH and the E2F6/DP1 binding motifs within the 300 bp peak regions. The NRF1

binding motif was not centrally enriched.

https://doi.org/10.1371/journal.pgen.1007193.g001
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specific to PRC1.6 (Fig 1A) and were not found in other ncPRC1s. We established HEK293 cell

clones in which each of these four proteins was depleted individually using the CRISPR/Cas9-

sgRNA system (S1 Fig) as controls at key steps in the analysis. By Western blotting we confirmed

successful depletion of MGA, L3MBTL2, E2F6 and PCGF6 in several clones (Fig 1B).

Next, we determined MGA, L3MBTL2, E2F6 and PCGF6 occupancy by ChIP-seq using

chromatin of the corresponding knockout cell lines as a reference for peak selection. Thereby,

we were able to remove a number of perfectly shaped false positive ChIP-seq signals (S2A Fig)

from the classified lists of binding sites. We obtained different peak strengths and different

numbers of peaks for the different factors (L3MBTL2 > E2F6 >MGA > PCGF6), possibly

due to the different performance of the antibodies resulting in different ChIP efficiencies.

Stringent filtering of uniquely mapped reads (�30 tags and�3-fold enrichment over the cor-

responding knockout control) yielded lists of high-confidence binding sites for each factor.

Comparison of the MGA, L3MBTL2, E2F6 and PCGF6 data sets revealed a very high degree

of overlap (Fig 1C and 1D) reflecting colocalization (Fig 1E). Consistent with the role of PRC1

in regulating gene expression, the large majority of these sites were located close to the 5´-end

of annotated transcripts (Fig 1F). We also confirmed colocalization of MGA, L3MBTL2, E2F6

and PCGF6 to a set of selected target promoters by conventional ChIP-qPCR analysis (Fig 1G).

The overlap of the MGA, L3MBTL2, E2F6 and PCGF6 ChIP-seq peaks shown in Fig 1C

also suggests the existence of some genomic sites bound by only one of the four factors. How-

ever, the majority of the potential factor-specific sites was removed when we compared filtered

peaks with unfiltered MACS peaks (S2B–S2E Fig). Moreover, visual genome browser inspec-

tion of the remaining potential subunit-specific peaks indicated the shared presence of MGA,

E2F6, L3MBTL2 and PCGF6 at all examined sites (S2B–S2E Fig). Hence, our ChIP-seq results

indicate that all four factors bind to the same genomic loci in vivo. This conclusion is strongly

supported by the complete absence of genomic L3MBTL2, E2F6 and PCGF6 binding events in

MGA-depleted cells (see below).

A de novo sequence motif analysis of the top 600 ranked MGA, L3MBTL2, E2F6 and PCGF6

binding sites revealed centrally enriched motifs that match in vitro recognition sequences for

MGA/MAX (the E-Box, CACGTG) [17] and for E2F6/DP1 (GCGGGAA) [18] (Fig 1H). The

abundant occurrence of the E-box and the E2F6 binding motif indicated that both, MGA and

E2F6, could be important for recruitment of PRC1.6 to its specific sites in chromatin.

MGA plays a crucial role in genomic targeting of PRC1.6

MGA and E2F6 are sequence-specific DNA binding factors; and L3MBTL2 is a histone-inter-

acting protein. Having found that they colocalize genome-wide, we set out to investigate their

interdependence in genomic targeting of PRC1.6. At first we focused on the role of MGA and

examined whether binding of other PRC1.6 subunits was affected in MGA-depleted cells.

ChIP-seq analysis revealed that MGAko cells lack genome-wide binding of both L3MBTL2

and E2F6 (Fig 2A and 2B) indicating that MGA is crucial for genomic targeting of L3MBTL2

and E2F6 and potentially for the entire PRC1.6 complex. This finding was particularly unex-

pected since the E2F6/DP2 heterodimer binds E-box motifs readily in vitro [18]. Western blot

analysis revealed that MGA-depleted cells contained markedly less E2F6 as well as PCGF6

(Fig 2C). The reduced protein levels of E2F6 and PCGF6 in MGAko cells were likely due to

impaired protein stability, as the transcript levels of E2F6 and PCGF6 were not reduced in

MGAko cells (Fig 2D). The protein level of L3MBTL2 in MGAko cells was similar as in wild

type cells. However, the fraction of SUMO-modified L3MBTL2 [20] was strongly reduced (Fig

2C), which may indicate that SUMOylation of L3MBTL2 in wild type cells takes place at the

level of chromatin. Finally, the level of RING2 protein was unchanged in MGA-deficient cells.

MGA, L3MBTL2 and E2F6 determine genomic binding of PRC1.6
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To exclude that the lack of any E2F6 and L3MBTL2 binding in MGAko cells was the result

of inefficient ChIPs, we also probed a panel of selected target promoters by ChIP-qPCR. These

experiments validated the lack of genomic L3MBTL2 and E2F6 binding in two different

MGAko clones (Fig 2E). We also analyzed for the presence of other PRC1.6 components includ-

ing PCGF6, MAX, RING2, RYBP, HP1γ and the H2AK119ub1 mark. All factors as well as the

H2AK119ub1 mark were present at the MGA target sites in wild type cells but were absent or,

in the case of the H2AK119ub1 mark, markedly reduced in both MGA-depleted cell clones (Fig

2E). The global H2AK119ub1 levels were similar in wild type, MGAko, L3MBTL2ko, E2F6ko,

and PCGF6ko cells (S3 Fig) showing that the observed reduction of the H2AK119ub1 mark at

the PRC1.6 target regions is due to changes in local RING2 deposition. Collectively, these results

demonstrate that MGA is absolutely crucial for genomic loading of the entire PRC1.6 complex.

Importantly, these results also indicate that E2F6, L3MBTL2 and PCGF6 bind to their genomic

sites exclusively in the context of the PRC1.6 complex and are not recruited to chromatin inde-

pendently of PRC1.6.

Since previous studies reported that H2AK119ub1 plays a critical role for recruitment of

PRC2 followed by downstream deposition of H3K27me3 [10], we also tested for the presence

of the catalytic PRC2 component EZH2 and for H3K27me3 (Fig 2F). Neither EZH2 nor

H3K27me3 were enriched at the selected PRC1.6 loci suggesting that PRC1.6 binding is not

generally interconnected with PRC2 binding. Importantly, we found considerable enrichment

of EZH2 and H3K27me3 at known PRC2-dependent canonical PRC1 target sites. These canon-

ical PRC1 binding sites were not bound by MGA, and the levels of EZH2 and H3K27me3 at

these sites remained unchanged in MGAko cells (Fig 2F). The absence of MGA at canonical

PRC1 binding regions is consistent with genome-wide data that revealed only a low level of

overlap between PCGF6 and other PCGFs in HEK293 cells [7].

MGA promotes the genomic localisation of PRC1.6 through different

mechanisms

Given that MGA is essential for targeting of PRC1.6, it would be expected that re-expression of

MGA would restore not only genomic binding of MGA but also of the other PRC1.6 components.

To test this prediction, we expressed full-length MGA in MGAko cells, and subsequently analyzed

a panel of PRC1.6 target promoters for binding of exogenous MGA and of endogenous L3MBTL2,

E2F6, PCGF6, MAX and RING2. Indeed, re-expression of MGA in MGAko cells not only restored

specific binding of MGA but also of the other PRC1.6 subunits (Fig 3A). We did not observe an

increase of H2AK119ub1 levels at these promoters. Potentially, the short time span of transient

MGA expression was not sufficient for the H2AK119ub1 mark to be deposited efficiently.

MGA contains two different DNA binding domains, a T-box domain close to the N-termi-

nus and a bHLH domain in its C-terminal part (Fig 3B). To test whether these DNA binding

Fig 2. MGA is essential for genomic binding of PRC1.6. (A) Heat map view of the distribution of union MGA, L3MBTL2 and E2F6 peaks in wild type cells (n = 8342)

and in MGA-depleted cells at +/- 2 kb regions centred over the MGA peaks. (B) Representative genome browser screenshots showing binding of MGA, L3MBTL2,

E2F6 and PCGF6 to the AEBP2,RPA2, RFC1 and SPOP promoters in wild type cells. MGA-depleted cells lack binding of L3MBTL2 and E2F6. (C) Western blot analysis

of L3MBTL2, E2F6, PCGF6 and RING2 in wild type HEK293 cells and in two different MGA-depleted clones (cl26 and cl27). The anti-Tubulin blot served as a loading

control. (D) L3MBTL2-, E2F6- and PCGF6 transcripts were determined in wild type cells and in MGA-depleted cell clones by RT-qPCR analysis. B2M transcript levels

were used to normalize the data across samples, and transcript levels in wild type cells were arbitrarily set to 1. Data represent the average of technical replicates ± SD.

(E) ChIP-qPCR data showing lack of L3MBTL2, E2F6, PCGF6, MAX, RING2, RYBP and HP1γ binding to representative PRC1.6 target promoters in MGAko cells, and

diminished deposition of H2AK119ub1. The CDC7 -2kb region served as a negative control region. Percent of input values represent the mean of at least three

independent experiments +/- SD. (F) PRC1.6 target promoters are not bound by PRC2 and lack H3K27me3. Local levels of EZH2 and H3K27me3 at selected PRC1.6

target promoters in wild type (WT) and in MGAko cells (clones cl26 and cl27) were determined by ChIP-qPCR analysis. Genomic regions known to be bound by

canonical PRC1 (FUT9,MYT1 and TSH2B) served as positive control regions. These regions were not bound by MGA (right panel). Percent of input values represent

the mean of at least three independent experiments +/- SD.

https://doi.org/10.1371/journal.pgen.1007193.g002
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Fig 3. MGA promotes binding of PRC1.6 by DNA-binding-dependent and DNA-binding-independent mechanisms. (A) Expression of wild type MGA in MGAko
cells rescues binding of PRC1.6. ChIP-qPCR data showing binding of transiently expressed MGA and of endogenous L3MBTL2, E2F6, PCGF6, RING2 and MAX to

representative PRC1.6 target promoters. The level of the H2AK119ub1 was not affected. Percent of input values represent the mean of at least three independent

experiments +/- SD. (B) Schematic representation of the MGA ΔTbox and bHLH mutants. (C) Western blot analysis of wild type MGA and of the DNA-binding-

deficient MGA mutants (ΔT-Box, bHLHmut and ΔTbHLHmut) expressed in MGAko cells. The anti-Tubulin blot served as a loading control. (D) ChIP-qPCR analyses

of MGA and L3MBTL2 binding to selected PRC1.6 target promoters in MGAko cells and in MGAko cells re-expressing wild type MGA (MGA WT) or DNA-binding-

deficient MGA mutants (MGA ΔT-Box, MGA bHLHmut or MGA ΔTbHLHmut). The error bars denote SD; n = 3.

https://doi.org/10.1371/journal.pgen.1007193.g003
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domains account for genomic loading of PRC1.6, we generated two different types of DNA

binding-deficient MGA mutants by deleting the entire T-box domain (MGA-ΔT, aa 79 –aa 264

deleted), and by replacing several critical amino acids in the bHLH domain [27,28] by alanine

residues (MGA-bHLHmut, MGA-H2477A_ER2481/2482AA_R2485A). Compared with wild

type MGA, binding of the MGA-bHLH mutant to several target promoters (AEBP2, ZFR, CDIP,

CCND2 and TFAP4) was strongly reduced (Fig 3D). We also observed reduced binding of the

MGA-T-box deletion mutant to the SPOP promoter. However, both MGA mutants still bound

to the RFC1, PHF20, RPA2, RNF130 and CDC7promoters as efficiently as wild type MGA (Fig

3D). We also tested binding of an MGA double mutant in which both DNA binding domains

were mutated simultaneously (MGA-ΔT-bHLHmut). Remarkably, the MGA-ΔT-bHLHmut

double mutant still bound to these promoters as efficiently as wild type MGA. Importantly, the

DNA binding-deficient MGA mutants also rescued binding of endogenous L3MBTL2 to the

RFC1, PHF20, RPA2, RNF130 and CDC7promoters but not to the MGA-bHLH-dependent

AEBP2, ZFR, CDIP, CCND2 and TFAP4 promoters and to the MGA-T-Box-dependent SPOP
promoter (Fig 3D, right panel). These results suggest that MGA can recruit PRC1.6 to specific

target sites by DNA-binding-dependent and by DNA-binding-independent mechanisms.

L3MBTL2 and E2F6 contribute to genomic binding of PRC1.6

As MGA is able to bind a subset of PRC1.6 loci independent of its DNA-binding activity, we

investigated the potential contribution of E2F6, L3MBTL2 or PCGF6 to the recruitment of

PRC1.6 to its target sites. To address this issue, we profiled binding of MGA, L3MBTL2 and

E2F6 in cells lacking L3MBTL2, E2F6 or PCGF6 (L3MBTL2ko, E2F6ko or PCGF6ko cells).

Importantly, the level of MGA and of other PRC1.6 subunits in L3MBTL2ko-, E2F6ko-, and

PCGF6ko cells was unaffected (Fig 4A and S4 Fig). Analysis of the ChIP-seq data sets revealed

that the overall genomic positions of the PRC1.6 binding sites in E2F6ko-, L3MBTL2ko- and

PCGF6ko cells are similar to those in wild type cells (Fig 4B and 4C). However, the signal

strengths of the MGA and L3MBTL2 peaks in E2F6ko cells and the signal strength of the MGA

and E2F6 peaks in L3MBTL2ko cells were significantly reduced, but only slightly affected in

PCGF6ko cells (Fig 4C and 4D). Notably the extent of reduction of MGA binding in E2F6ko
cells correlated well with the extent of reduction of L3MBTL2 binding in E2F6ko cells (Fig 4E,

left panel). Equally, the extent of reduction of MGA binding in L3MBTL2ko cells correlated

well with the extent of reduction of E2F6 binding in L3MBTL2ko cells (Fig 4E, right panel).

These results demonstrate that the genomic localization of PCR1.6 requires the simultaneous

association of MGA, L3MBTL2, E2F6 and PCGF6 in a single complex.

L3MBTL2 and E2F6 recruit PRC1.6 differently to distinct sets of genes

Binding of MGA to the majority of its genomic sites was greatly reduced in L3MBTL2ko as

well as in E2F6ko cells, indicating that both, L3MBTL2 and E2F6 contributed to genomic bind-

ing of PRC1.6. Importantly, however, the extent of reduction of MGA and E2F6 binding in

L3MBTL2ko cells, and the extent of reduction of MGA and L3MBTL2 binding in E2F6ko cells

did not correlate (Fig 5A). Rather, the shape of these plots revealed three distinct types of

PRC1.6 binding site (i) loci where binding of MGA was reduced in both, L3MBTL2ko and

E2F6ko cells (ii) loci where binding of MGA was reduced in L3MBTL2ko cells but not in

E2F6ko cells; (iii) loci where binding of MGA was reduced in E2F6ko cells but not in

L3MBTL2ko cells. Thus, we were able to identify L3MBTL2-dependent and E2F6-dependent

PRC1.6 binding sites (Fig 5B and S5A Fig).

We also probed a panel of PRC1.6 target sites in two different L3MBTL2ko and E2F6ko cell

clones by conventional ChIP-qPCR. We tested for the presence of MGA, L3MBTL2, E2F6 and
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PCGF6, MAX, RING2 and H2AK119ub1 (Fig 5C and S5B Fig). This analysis confirmed

L3MBTL2- and E2F6-dependent binding of PRC1.6 to the RFC1, PHF20 and SPOP promoters;

L3MBTL2-dependent but E2F6-independent binding to the AEBP2 and ZFR promoters; and

E2F6-dependent but L3MBTL2-independent binding to the ALDOA,RNF130 and CDC7 pro-

moters (S5B Fig). In all cases the levels of H2AK119ub1 correlated with PRC1.6 binding.

Finally, we performed rescue experiments in which we found that expression of L3MBTL2 in

L3MBTL2ko cells not only restored binding of ectopically expressed L3MBTL2 but also of

endogenous MGA, E2F6 and PCGF6 to the L3MBTL2-dependent RFC1, PHF20, SPOP,

AEBP2 and ZFR promoters (Fig 5D). Of note, the enrichment levels observed in rescued

L3MBTL2ko cells were approximately 1.5- to 3-fold lower than in wild type cells (compare Fig

5D with in Fig 1G). This is not surprising given that not all cells in the population express

L3MBTL2 after transient transfection. Importantly, L3MBTL2 also re-occupied the E2F6-de-

pendent ALDOA,RNF130 and CDC7 promoters; however, binding of MGA, E2F6 and PCGF6

to these promoters was not enhanced. This result strongly supports our model in which

L3MBTL2 is only essential for recruitment of PRC1.6 to a subset of loci despite its presence at

all PRC1.6 binding sites.

To gain further insight into the E2F6-dependent recruitment of PRC1.6, we examined

whether the DNA-binding activity of E2F6 is necessary for PRC1.6 binding. Wild type E2F6

expressed in E2F6ko cells re-occupied all tested PRC1.6 target loci, and also resulted in slightly

increased binding of endogenous MGA and L3MBTL2 to E2F6-dependent promoters but not

to the L3MBTL2-dependent promoters (Fig 5E). The DNA binding-deficient E2F6 mutant

(E2F6-L68E,V69F) did not bind to the E2F6-dependent promoters, and did not re-occupy the

L3MBTL2-dependent promoters. This observation indicates that the DNA binding domain of

E2F6 is not only necessary for DNA recognition but also for association with PRC1.6.

By ChIP-qPCR analysis of selected promoters we also validated that PCGF6 has a limited

role in the recruitment of MGA, L3MBTL2 and E2F6 (S6 Fig). However, it is important to

note that binding of RING2 in PCGF6ko cells was nearly reduced to levels at a negative control

region. Consistently, H2AK119ub1 levels were also reduced at these promoters (S6 Fig). Thus,

PCGF6, albeit not essential for binding site selection by PRC1.6, it is required to recruit

RING2 to these loci. This observation is in line with a recent study that revealed recruitment of

RING2 by a PCGF6-TET repressor fusion protein tethered to a Tet operator array in vivo [29].

We surveyed the DNA sequences of L3MBTL2- and the E2F6-dependent PRC1.6 loci and

found specific enrichment of the E2F binding motif (GCGGGA) in the E2F6-dependent

PRC1.6 binding sites, and specific enrichment of the E-box (CACGTG) and T-box (AGGC/

TGC/TGAGG) binding motifs in the L3MBTL2-dependent PRC1.6 binding sites (Fig 5F). The

strong association of E-box and T-box motifs with L3MBTL2-dependent PRC1.6 binding sites

point to an important role of L3MBTL2 in facilitating or stabilizing an interaction of MGA/

MAX with DNA.

Fig 4. L3MBTL2 and E2F6 contribute to chromatin binding of PRC1.6. (A) Western blot analysis of L3MBTL2, MGA, E2F6, PCGF6 and

RING2 in L3MBTL2ko, E2F6ko and PCGF6ko cells. Re-probing for Tubulin (TUB) controlled loading of extracts. The Tubulin blots are

related to the MGA blots. Uncropped versions of the MGA blots are shown in S4 Fig. (B) Representative genome browser screenshots of a 0.5

Mb region of chromosome 19 showing reduced binding of PRC1.6 components to several promoters in L3MBTL2ko and in E2F6ko cells but

not in PCGF6ko cells. (C) Heat map views of the distribution of MGA, L3MBTL2 and E2F6 peaks in wild type cells (n = 8342) and in MGAko,

L3MBTL2ko, E2F6ko and PCGF6ko cells at +/- 2 kb regions centred over the MGA peaks. (D) Scatter plots comparing the signal intensity of

MGA, L3MBTL2 and E2F6 peaks in wild type cells with the signal intensity of corresponding peaks in L3MBTL2ko (left panels), E2F6ko
(middle panels) or PCGF6ko cells (right panels). Normalized ChIP-seq read counts in MGA ChIP-seq peak regions of wild type cells were

plotted against the normalized read counts in corresponding peak regions of L3MBTL2ko, E2F6ko or PCGF6ko cells. (E) Left panel, scatter

plot showing the correlation between reduced MGA binding and reduced L3MBTL2 binding in E2F6ko cells. Right panel, scatter plot

showing the correlation between reduced MGA binding and reduced E2F6 binding in L3MBTLko cells. The top 500 ranked MGA binding

sites were used to calculate the fold change of normalized ChIP-seq read counts in L3MBTL2ko and E2F6ko cells relative to wild type cells.

https://doi.org/10.1371/journal.pgen.1007193.g004
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Finally, we examined whether there are specific functional features shared amongst

E2F6-dependent and L3MBTL2-dependent PRC1.6-bound genes. E2F6-dependent PRC1.6

target genes but not L3MBTL2-dependent PRC1.6 target genes were highly enriched in Gene

Ontology (GO) terms related to cell cycle control (Fig 5G). This finding is in line with the role

of E2F6 as an RB-independent transcriptional repressor during cell cycle progression [30]. GO

terms associated with L3MBTL2-dependent PRC1.6 target genes included quite different bio-

logical processes such as “positive regulation of neurotransmitter secretion”, meiotic “synapto-

nemal complex assembly” and “ribosome assembly”. Altogether these results suggest that E2F6

and L3MBTL2 recruit PRC1.6 to distinct gene sets that regulate different biological processes.

Role of PRC1.6 in HEK293 cell function

We went on to investigate the role of PRC1.6 in cell growth and gene expression in HEK293

cells by comparing the proliferation potential of wild type, MGAko, L3MBTL2ko, E2F6ko and

PCGF6ko cells. The growth rates of wild type cells and PCGF6ko cells were similar; however,

we observed reduced proliferation of MGAko, L3MBTL2ko and E2F6ko cells. (Fig 6A). Next,

we examined the transcriptional impact of PRC1.6. RNA-seq of three independent wild type

cell cultures and three independent MGAko clones identified 587 genes with�2-fold altered

expression levels in MGAko cells. Expression of 485 genes was reduced in the MGAko cells,

while expression of 102 genes was increased (Fig 6B). Comparison of the set of de-regulated

genes with the gene set bound by MGA revealed that MGA was not bound to the majority

of the down-regulated genes (434/485, 89%) suggesting an indirect role of MGA in the regula-

tion of these genes. In contrast, MGA was bound to the majority of the up-regulated genes

(71/102, 70%) suggesting that PRC1.6 acts as a direct repressor on these genes. Representative

ChIP-seq and RNA-seq genome browser screenshots of de-repressed genes bound by PRC1.6

are shown in Fig 6C. Interestingly, the top up-regulated genes in MGAko cells included several

critical regulators and effectors of meiosis such as CNTD1, SMC1B, SYCE2, YBX2, MEIOC
(C17orf104),RAD9B,TAF7L, STAG3, CPEB1 and ALDH1A2, as well as several testis-enriched

genes such as PRSS50, TRIM71, C19orf57,ZCWPW1, ZNF239,RIBC2, NEUROG2 (http://

www.proteinatlas.org/).

To test whether L3MBTL2, E2F6 and PCGF6 contribute to PRC1.6 target gene repression,

we examined the expression of a panel of fourteen genes in L3MBTL2ko, E2F6ko and

PCGF6ko cells by locus-specific RT-PCR assays. We found increased transcript levels of these

genes also in L3MBTL2ko, E2F6ko or PCGF6ko cells, yet to different degrees (Fig 6D). For

example, compared with wild type cells, transcript levels of CNTD1were also increased in

Fig 5. L3MBTL2 and E2F6 recruit PRC1.6 differentially in a promoter-specific manner. (A) Left panel, scatter plot comparing the extent of

reduction (fold change of normalized tag counts) of MGA binding in L3MBTL2ko cells with the extent of reduction in E2F6ko cells. Right panel, scatter

plot comparing the extent of reduction of E2F6 binding in L3MBTL2ko cells with the extent of reduction of L3MBTL2 in E2F6ko cells. The

E2F6-dependent RNF130 and the L3MBTL2-dependent ZFR promoters are indicated for clarity. (B) Genome browser screenshots of ChIP-seq tracks

showing binding of MGA, L3MBTL2, E2F6 and PCGF6 to the RNF130 and ZFR promoters in wild type cells (WT), and in MGAko, L3MBTL2ko,

E2F6ko and PCGF6ko cells. (C) ChIP-qPCR analysis of MGA binding to selected promoters in two different L3MBTL2ko (L2ko cl10 and L2ko cl14,

upper panel) and in two different E2F6ko (E2F6ko cl1 and E2F6ko cl11, lower panel) cell clones. The CDC7 -2kb region served as a negative control

region. Percent of input values represent the mean of at least three independent experiments +/- SD. (D) Expression of L3MBTL2 in L3MBTL2ko cells

rescues binding of PRC1.6. Left, Western blot for L3MBTL2. Right, ChIP-qPCR data showing binding of exogenous L3MBTL2 and of endogenous

MGA, E2F6 and PCGF6 to representative PRC1.6 target promoters. Percent of input values represent the mean of at least three independent

experiments +/- SD. (E) Expression of wild type E2F6 but not of a DNA binding-deficient E2F6 mutant (E2F6mut) in E2F6ko cells rescues binding of

PRC1.6. Left, Western blot for E2F6. Right, ChIP-qPCR data showing binding of exogenous E2F6 (wild type or DNA-binding deficient mutant) and of

endogenous MGA and L3MBTL2 to representative PRC1.6 target promoters. Percent of input values represent the mean of at least three independent

experiments +/- SD. (F) Venn diagram showing the overlap of E2F6 peaks in L3MBTL2ko cells and L3MBTL2 peaks in E2F6ko cells. Logos of the

enriched sequence motifs were obtained by running MEME-ChIP with 300 bp summits of the ChIP-seq peaks. (G) GO analyses of biological functions

of E2F6-dependent and of L3MBTL2-dependent PRC1.6 target genes. Enriched GO terms were retrieved using Enrichr. p values are plotted in -log2

scale.

https://doi.org/10.1371/journal.pgen.1007193.g005
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Fig 6. The role of PRC1.6 in HEK293 cell function. (A) Reduced proliferation of MGAko, L3MBTL2ko and E2F6ko cells. Shown are growth curves of

wildtype, MGAko, L3MBTL2ko, E2F6ko and PCGF6ko HEK293 cells. Cells were seed at 3x105, and counted and replated at the indicated time points.

Cumulative cell numbers were calculated by multiplying the initial cell number with the fold-increase in cell numbers in each interval. (B) Venn

diagrams illustrating the overlap of MGA-bound genes and genes down- or up-regulated in MGAko cells. Left circle, genes with�2-fold reduced
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L3MBTL2ko and in E2F6ko but not in PCGF6ko cells. Transcript levels of SMC1B, however,

were increased in E2F6ko cells but not in L3MBTL2ko and PCGF6ko cells. Conversely, tran-

script levels of STAG3 were increased in L3MBTL2ko and PCGF6ko cells but not in E2F6ko
cells (Fig 6D). Thus, L3MBTL2, E2F6 and PCGF6 contributed to repression of these genes dif-

ferentially in a gene-specific manner. Interestingly, specific de-repression of these genes in

L3MBTL2ko or E2F6ko cells, respectively, correlated well with the contribution of L3MBTL2

and E2F6 to PRC1.6 binding. Binding of PRC1.6 to the CNTD1 promoter was diminished in

L3MBTL2ko as well as in E2F6ko cells. Binding of PRC1.6 to the SMC1B promoter was lost in

E2F6ko cells but remained in L3MBTL2ko cells, and binding of PRC1.6 to the STAG3 pro-

moter was lost in L3MBTL2ko cells but remained in E2F6ko cells (S7 Fig).

Mga, L3mbtl2 and Pcgf6 colocalize in mouse ESCs and repress genes

involved in differentiation

Several recent studies revealed critical roles for Mga, L3mbtl2 and Pcgf6 in the regulation of

mouse ES cell pluripotency, proliferation and differentiation [13,23,24,26,29]. Therefore, we

investigated the genomic localization of PRC1.6 components also in mouse ES cells. We

focused on Mga, L3mbtl2 and Pcgf6 as there is no available antibody, which efficiently recog-

nizes murine E2f6. Also of note is that we failed to generate Mga-deficient ESC clones, which

is in line with a previous study suggesting that Mga plays an essential role in ESCs [23]. There-

fore, we used an IgG control ChIP-seq dataset as a reference for peak selection. Similar to the

ChIP-seq results with chromatin of HEK293 cells, we obtained different numbers of filtered

(�30 tags and�3-fold enrichment over IgG) peaks for Mga (14.183), L3mbtl2 (17.007) and

Pcgf6 (4817) (Fig 7A). The vast majority of the Pcgf6 peaks (90%) overlapped with Mga and

L3mbtl2 peaks; and the majority of the Mga peaks (82%) overlapped with the L3mbtl2 peaks.

Genome browser track and heatmap views of binding densities also revealed clear colocaliza-

tion of Mga, L3mbtl2 and Pcgf6 (Fig 7B and 7C). Moreover, visual inspection of genome

browser tracks did not confirm any Mga-, L3mbtl2- or Pcgf6-specific binding site (S8A Fig).

Collectively, our ChIP-seq data sets reveal that Mga, L3mbtl2 and Pcgf6 colocalize in mouse

ESCs suggesting strongly that the function of PRC1.6 is conserved in murine and human cells.

This conclusion was further supported by a de novo sequence motif analysis of the top 600

ranked Mga/L3mbtl2/Pcgf6 peak regions, which revealed the presence of centrally enriched

E-box as well as T-box and E2F6/DP1 recognition sequences as prevalent motifs (Fig 7D).

Finally, as in HEK293 cells the majority of the Mga/L3mbtl2/Pcgf6 binding sites were located

close to transcriptional start sites (Fig 7E). However we observed that the genomic distribution

of the Mga/L3mbtl2/Pcgf6 peaks in mouse ESCs differ to some extent from the distribution in

HEK293 cells. In many instances, we observed multiple Mga/L3mbtl2/Pcgf6 peaks within a

gene locus including the promoter, exons, and the 3´-end (S8B Fig). Potentially, the peaks

within gene bodies were not direct PRC1.6 binding sites but reflect local intragenic loops

within genes that fold exons close to cognate promoters. The capture of such structural fea-

tures by ChIP-seq has been reported previously [31]. It is also possible that these intragenic

peaks reflect discrete compacted chromatin structures similar to those generated by canonical

cPRC1 [32].

transcript levels in MGAko cells; right circle, genes with�2-fold increased transcript levels in MGAko cells. (C) Representative genome browser

screenshots of ChIP-seq and RNA-seq tracks illustrating binding of MGA, L3MBTL2, E2F6 and PCGF6 (top tracks) to the CNTD1 and SMC1B
promoters, and RNA expression (bottom tracks) of the corresponding genes in three wild type samples (MGA_wt1, MGA_wt2 and MGA_wt3), and in

three different MGAko cell clones (MGAko_cl26, MGAko_cl27 and MGAko_cl30). (D) RT-qPCR-based analysis of expression changes of selected genes

in MGAko, E2F6ko, L3MBTL2ko and PCGF6ko cells. Transcript levels were normalized to B2M transcript levels, and are depicted relative to transcript

levels in wild type cells.

https://doi.org/10.1371/journal.pgen.1007193.g006
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Fig 7. Mga, L3mbtl2 and Pcgf6 colocalize in mouse ESCs and repress genes involved in differentiation. (A) Venn diagrams representing the overlap of

Mga, L3mbtl2 and Pcgf6 peaks in mouse ESCs. The total number of filtered (�30 tags and�3-fold enrichment over IgG control) ChIP-seq peaks and their

overlap is shown. (B) A heat map view of the distribution of the top 8000 union Mga-L3mbtl2-Pcgf6 peaks in mouse ES cells at +/- 2 kb regions centred

over the MGA peaks. (C) Representative genome browser screenshot of a 100 kb region of chromosome 1 showing co-binding of Mga, L3mbtl2 and Pcgf6

to four promoter regions. (D) Sequence motifs enriched in Mga-L3mbtl2-Pcgf6 binding regions in mouse ESCs. Top, logos were obtained by running

MEME-ChIP with 300 bp summits of the top 600 union Mga-L3mbtl2-Pcgf6 ChIP-seq peaks. The numbers next to the logos indicate the occurrence of the

motifs, the statistical significance (E-value) and the transcription factors that bind to the motif. Bottom, local motif enrichment analysis (CentriMo)

showing central enrichment of the Mga/Max bHLH domain E-box binding motif and the motif that identified MEME Tomtom as a T-box as well as a E2f6

recognition sequence. The Nrf1 motif was not centrally enriched within the 300 bp peak regions. (E) Distribution of Mga, L3mbtl2 and Pcgf6 peaks relative

to positions -2000 bp upstream to +2000 bp downstream of gene bodies. TSS, transcription start site; TES, transcription end site. (F) Middle panel, Venn

diagram illustrating the overlap of PRC1.6-bound genes and genes up-regulated in Pcgf6ko cells [26] and in L3mbtl2ko cells [13]. Left panel, GO analyses of

biological functions of PRC1.6-bound genes that were de-repressed�2-fold in Pcgf6ko cells. Right panel, GO analyses of biological functions of

PRC1.6-bound genes that were de-repressed�2-fold in L3mbtl2ko cells. Enriched GO terms were retrieved using DAVID 6.8. (GOTERM_BP_DIRECT,

Functional Annotation Chart). Benjamini values are plotted in log10 scale.

https://doi.org/10.1371/journal.pgen.1007193.g007
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To examine the impact of the Mga/L3mbtl2/Pcgf6 binding sites on gene expression in mouse

ESCs, we compared our ChIP-seq data sets with genes that were deregulated in L3mbtl2-depleted

[13] or in Pcgf6-depleted ESCs [26]. We found that two-third of the genes (882 out of 1354) that

were up-regulated in Pcgf6-depleted ES cells, and 71% of the genes that were up-regulated in

L3mbtl2-depleted cells (421 out of 587) by�2-fold were bound by Mga, L3mbtl2 and Pcgf6 (Fig

7F). Interestingly, genes aberrantly expressed in Pcgf6ko and in L3mbtl2ko ESCs largely do not

overlap (Fig 7F). Nevertheless, a GO analysis revealed that Pcgf6-dependent, as well as L3mbtl2-

dependent repressed PRC1.6 target genes were strongly associated with germ-line development

(meiosis and spermatogenesis). Also the small group of 78 direct PRC1.6 target genes that were

up-regulated in Pcgf6ko as well as in L3mbtl2ko ES cells (Fig 7F) encode several meiotic genes

including Syce3, Stk31, Slc22a,Mei1 and Tdrkh. Remarkably, promoters of the meiotic genes were

within the top ranked 200 Mga, L3mbtl2 and Pcgf6 peaks. Genes specifically de-repressed in

Pcgf6-depleted ES cells but not in L3mbtl2-depleted ES cells were related to the wnt signaling

pathway and to neuron differentiation. Conversely, specific L3mbtl2-repressed genes were associ-

ated with angiogenesis and positive regulation of cell migration (Fig 7F). This finding suggests

that Pcgf6 and L3mbtl2 repress common as well as different sets of genes despite the presence of

both factors at all target genes within the PRC1.6 complex.

PRC1.6 distribution in mESCs partially overlaps with other PRC1 complexes

Mouse ESCs also express other polycomb complexes including canonical cPRC1, the non-

canonical PRC1.1 (PRC1-Kdm2b, PRC1-Fbxl10) complex and PRC2. To determine whether

these complexes also bind to PRC1.6 target genes we compared our Mga/L3mbtl2/Pcgf6 data

sets with published ChIP-seq data sets of Ring1b, Rybp, Cbx6, Pcgf2 (Mel18), Cbx7, Suz12,

H3K27me3 and Kdm2b (Fbxl10). Ring1b is a constituent of all PRC1 complexes. Cbx6 is

associated with cPRC1 as well as with PRC1.6 [33]. Rybp is found in canonical as well as

in non-canonical complexes; however the presence of Rybp or Cbx7 in PRC1 complexes is

mutually exclusive [8,34]. Pcgf2 and Cbx7 are subunits of the cPRC1 complex and require the

H3K27me3 mark to localize to chromatin [34,35]. Suz12 is a subunit of the PRC2 complex,

which deposits the H3K27me3 mark. Kdm2b together with Pcgf1 forms the non-canonical

variant PRC1.1 [6,9]. A heatmap view of binding densities shows tight colocalization of Rybp

and Mga-L3mbtl2-Pcgf6 (Fig 8A). This is consistent with the presence of Rybp in the PRC1.6

complex [13,26]. Also the Cbx6 ChIP-seq data set displayed colocalization with Mga-L3mbtl2-

Pcgf6 binding sites despite its weak density. This finding is consistent with a recent report that

revealed an interaction of Cbx6 with Pcgf6 and L3mbtl2 [33]. A considerable number of PRC1.6

target regions was also occupied by canonical PRC1 (Pcgf2 and Cbx7), PRC1.1 (Kdm2b) and

PRC2 (Suz12), and was decorated with H3K27me3 (Fig 8A). Unlike Rybp, however, Pcgf2,

Cbx7, Kdm2b, Suz12 and H3K27me3 displayed a broader distribution at the Pcgf6 target re-

gions. We assessed that approximately 30%, 50% and 90% of the high confidence Pcgf6 target

genes were co-occupied by Cbx7 (cPRC1), Suz12/H3K27me3 (PRC2) and Kdm2b (PRC1.1),

respectively (Fig 8B). Interestingly, meiosis-related genes that were de-repressed in Pcgf6- and

L3mbtl2-depleted cells were largely bound exclusively by PRC1.6, whereas “typical” cPRC1 tar-

get genes such as Nkx-2 or Hoxa7 were decorated with both PRC1.6 and cPRC1 as well as with

PRC2 (Fig 8C and 8D). Together, these results suggest that PRC1.6 and cPRC1 have both unique

and common target genes in mouse ESCs.

Discussion

In this study, we provide insights into the genomic targeting mechanism of the non-canonical

PRC1 complex PRC1.6. We find that MGA, L3MBTL2, E2F6 and PCGF6 colocalize genome-
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wide in the context of PRC1.6. MGA is absolutely crucial for binding of the complete PRC1.6

since genome-wide binding of E2F6, L3MBTL2 and PCGF6 is lost in MGA-depleted cells

(Fig 2). Mechanistically, we provide strong evidence that MGA executes recruitment of

PRC1.6 to its target sites through two distinct functions (Fig 9). On the one hand, MGA acts as

a sequence-specific DNA-binding factor mediating recruitment of PRC1.6 to E-box and T-

box containing promoters. On the other hand, MGA has a scaffolding function, which is inde-

pendent of its DNA binding capacity (Fig 3B and 3C). The scaffolding function of MGA may

protect E2F6 and PCGF6 against degradation (Fig 2C).

The other components of PRC1.6 have distinct functional roles. L3MBTL2 is also involved

in genomic targeting of PRC1.6 since in L3MBTL2ko cells, MGA, E2F6 and PCGF6 fail to

bind to a large fraction of promoters (Figs 4 and 5). These L3MBTL2-dependent PRC1.6 bind-

ing sites are enriched for the bHLH E-box motif but not for the E2F6-binding motif (Fig 5).

The MBT domains of L3MBTL2 are known to bind preferentially mono-, and di-methylated

histone H3 and H4 marks [19–21]; and full-length L3MBTL2 interacts with histone tails inde-

pendent of their lysine methylation state [12,20]. Thus, we propose that L3MBTL2 promotes

binding site selection of PRC1.6 by facilitating and stabilising the interaction of MGA/MAX

with E- or T-box-containing promoters.

PCGF6 has a minor role in genomic loading of PRC1.6 (Fig 4), but significantly it interacts

with RING1B [36], recruits it to genomic PRC1.6 sites and facilitates downstream H2AK119

ubiquitination and transcriptional repression [29]. Consistently, PRC1.6-bound promoters are

enriched of H2AK119ub1 (Fig 2E and S6 Fig). Importantly, these targets are not bound by

PRC2 and are not enriched in H3K27me3 (Fig 2F). The absence of PRC2 and H3K27me3 at

PRC1.6 target promoters is consistent with a previous report that revealed lack of H3K27me3

at L3MBTL2-E2F6 binding sites in K562 cells [12]. Yet, H3K27me3 enrichment was found at a

Fig 8. PRC1.6 binding sites partially overlap with cPRC1, PRC2 and ncPRC1.1 binding sites. (A) ChIP-seq heatmaps of Pcgf6,

IgG control, Ring1b (GSM1041372) [34], Rybp (GSM1041375) [34], Cbx6-HA (GSM2610616) [33], Cbx7 (GSM2610619) [33],

Pcgf2 (GSM1657387) [56], Suz12 (GSM1041374) [34], Kdm2b (GSM1003594) [6] and H3K27me3 (GSM1341951) [10] peaks in

mESCs at +/- 2 kb regions centred over the Mga-L3mbtl2-Pcgf6 peaks. (B) Venn diagrams showing the overlap of high confidence

Pcgf6 target genes (location of binding sites between -2.5 kb of TSS and TES) with those of Cbx7 (cPRC1), Suz12 and H3K27me3

(PRC2) and Kdm2b (ncPRC1.1). (C) Genome browser screenshots of ChIP-seq tracks at promoters of representative meiosis-

related genes (Dazl, Sycp3, Stk31 and Mei1) (D) Genome browser screenshots of ChIP-seq tracks at cPRC1 target genes (Nkx2-4 and

Hoxa7).

https://doi.org/10.1371/journal.pgen.1007193.g008

Fig 9. Model summarizing PRC1.6 targeting mechanisms. (1) PRC1.6 is recruited to a subset of target promoters by

direct DNA binding of MGA/MAX to E-boxes (CACGTG) and/or T-boxes (TCACACCT). (2) Interaction of

L3MBTL2 and HP1γ with methylated histones may promote binding site selection by facilitating and stabilizing

binding of MGA/MAX. (3) MGA also acts as a scaffold tethering E2F6 that in turn mediates PRC1.6 binding to

E2F6-recognition sites. (4) PCGF6 recruits RING1/2 that deposits the repressive histone mark H2AK119ub1.

https://doi.org/10.1371/journal.pgen.1007193.g009
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subgroup of Pcgf6 binding sites in mouse ESCs (Fig 8 and [29]) suggesting a potential cell

type-specific role of Pcgf6-dependent recruitment of PRC2 and downstream H3K27me3

deposition.

A large fraction of PRC1.6 binds to promoters that regulate mitotic cell cycle genes. Since

binding is largely unaffected in L3MBTL2-depleted cells targeting of PRC1.6 to this class of

genes is more likely mediated by E2F6 (Fig 5F and 5G). This finding is consistent with a previ-

ous report showing that E2F6 functions as an RB-independent transcriptional repressor by

controlling E2F1-3-dependent transcription during cell cycle progression, particularly by

counteracting the activating E2Fs during S phase [30]. These cell cycle-regulated genes are not

upregulated in MGA-depleted cells. Likely, E2F4, another repressive E2F family member,

compensates for the loss of E2F6-mediated PRC1.6 binding. Indeed, it has been shown that

only simultaneous inhibition of both, E2F6 and E2F4 activity, results in depression of these

PRC1.6 target genes [30].

Mga, L3mbtl2 and Pcgf6 colocalize also in mouse ESCs (Fig 7) strongly suggesting that the

core components of PRC1.6 are evolutionarily and functionally conserved. In addition, knock-

down of Mga and Max in mouse ESCs leads to the loss of Pcgf6 binding at several promoters

of the genes that are up-regulated in Pcgf6ko cells [29] indicating that also the recruitment

mechanisms in ESCs are similar to those observed in human cells. Notably, Pcgf6 is the most

highly expressed Pcgf paralog in undifferentiated ESCs [24], and Pcgf6 is the predominant

Ring1b-interactor in ESCs [37]. These observations indicate that PRC1.6 is a major PRC1

complex in ESCs. PRC1.6 components play essential roles in ESCs including regulation of ESC

pluripotency, proliferation and differentiation. Most significantly, Mga depletion leads to the

death of proliferating pluripotent ICM cells in vivo and in vitro, and the death of ESCs in vitro
[23]. Also Pcgf6ko and L3mbtl2ko as well as Maxko ESCs have defects in proliferation and dif-

ferentiation [13,26,38] but less severe as Mgako ESCs. The most severe phenotype of Mgako
ESCs is in line with the crucial importance of Mga for genomic PRC1.6 binding.

Consistent with published reports, we have found that in ESCs, PRC1.6 is involved in the

repression of meiotic genes. Ablation of Max, the dimerization partner of Mga, activates mei-

otic genes in ESCs and induces cytological changes, which are reminiscent of germ cells at the

leptotene and zygotene stages of meiosis [39,40]. Meiotic and germ-line-specific genes are also

activated in Pcgf6ko and L3mbtl2ko cells [13,26]. Mga, L3mbtl2 and Pcgf6 bind to the promot-

ers of these meiosis-specific genes (Fig 7) strongly suggesting that PRC1.6 directly represses

these genes in ESCs thereby safeguarding/preventing meiosis. Interestingly, several meiotic

genes are also de-repressed in MGA-deficient 293 cells (Fig 6). De-repression of a limited

number of meiotic and germ cell-specific genes is also observed in E2F6-deficient MEFs indi-

cating that the repressive function operates in somatic cells [41–43].

Knockdown of Pcgf6 results also in strongly increased expression levels of several meso-

dermal genes including T (Brachyury), the Runx transcription factor Mlf1 and the vascular

endothelial growth factor receptor 2 (Vegfr-2, Flk) encoded by the Kdr gene [24]. Our ChIP-

seq data revealed binding of Mga, L3mbtl2 and Pcgf6 to these genes suggesting that PRC1.6

also directly represses mesodermal lineage genes in mouse ESCs.

Apart from meiosis-specific and germ-line-specific genes, quite different gene sets are de-

repressed on Pcgf6- and L3mbtl2-depletion in ESCs. Based on this observation it was sug-

gested that Pcgf6 acts independently of L3mbtl2 [24]. However we provide strong evidence

that all Pcgf6 binding sites are also bound by L3mbtl2. We speculate that L3mbtl2 facilitates

binding of PRC1.6 to specific loci, while Pcgf6 acts through recruitment of Ring1b and down-

stream H2AK119ub1 [29]. Since L3mbtl2 associates with the methyltransferases G9A and GLP

[13,14] it may also facilitate H3K9 dimethylation. Indeed, G9A and GLP are required for

repression of germ cell-specific genes [44]. It is also possible that L3mbtl2, known to compact
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nucleosomal arrays in vitro [12], represses transcription directly by chromatin compaction

making promoters inaccessible for the transcription machinery.

Materials and methods

Antibodies

Rabbit polyclonal antibodies against MGA for use in ChIP experiments and immunoblotting

were generated by immunizing with a bacterially expressed GST fusion protein carrying the

300 C-terminal amino acids of human MGA. Immunization was carried out by Eurogentec

(Seraing, Belgium) using the 28-day Speedy immunization protocol. Antisera were affinity-

purified according to a protocol described in [45] using the matrix-coupled GST-MGA fusion

protein. The commercially available antibodies used in this study are shown in Table 1.

Generation of MGA-, E2F6-, L3MBTL2- and PCGF6-depleted cell lines

HEK293 cells were transfected using FugeneHD (Promega, Madison, WI) with plasmids

expressing mammalian-codon optimized Cas9 and sgRNAs targeting the coding region of

human MGA, E2F6, L3MBTL2 or PCGF6 (S1 Fig). The parental vector pSpCas9-2A-Puro

(pX459) was a gift from Feng Zhang (Addgene plasmid # 48139) [46]. The sequences of the oli-

gonucleotides used for targeting MGA, L3MBTL2, E2F6 and PCGF6 were as follows. MGA-

gRNA6: CATCTGGAAAGGTACTCCCA, MGA-gRNA7: GTCATACTTGAATTGTATAC;

L3MBTL2-gRNA6: GGATGTGATGAAAGGGATGA, L3MBTL2-gRNA7: GCCTCTGTCAT

CCAGACAGC; E2F6-gRNA1: GGGTATTCTTGACTTAAACA, E2F6-gRNA2: GTTTAAGT

Table 1. Commercially available antibodies used in this study.

Antibody Company Cat-No. Amount used

for ChIP

WB dilution

anti-EZH2 Diagenode

(Seraing, Belgium)

C15410039 3 μg -

anti-E2F6 Santa Cruz

(Dallas, TX)

sc-22823 3 μg 1:1000

anti-H2AK119Ub1 Cell Signaling

(Danvers, MA)

8240 6 μL 1:2000

anti-H2B Merck Millipore

(Billerica, MA)

07–371 - 1:2000

anti-H3K27me3 Diagenode

(Seraing, Belgium)

C15410195 2 μg -

anti-HP1γ Merck Millipore

(Billerica, MA)

05–690 3 μg -

anti-L3MBTL2 Active Motif

(Carlsbad, CA)

39569 8 μL 1:2000

anti-MAX Santa Cruz

(Dallas, TX)

sc-197 3 μg -

anti-PCGF6 Proteintech

(Rosemont, IL)

24103-1-AP 3 μg 1:1000

anti-RING2 Abcam

(Cambridge, UK)

ab101273 3 μg 1:2000

anti-RYBP Sigma Aldrich

(St. Louis, MO)

PRS2227 3 μg -

anti-Tubulin Merck Millipore

(Billerica, MA)

MAB3408 - 1:5000

Rabbit IgG control Diagenode

(Seraing, Belgium)

C15410206 3 μg -

https://doi.org/10.1371/journal.pgen.1007193.t001
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CAAGAATACCCC, E2F6-gRNA3: GTCGATTCCATCTAAGACAT; PCGF6-gRNA3:

GGTATGAAGACATTCTGTGA, PCGF6-gRNA4: TGTACTACTATATTGCATTT.

The empty pX459 vector was transfected as a negative control. Puromycin selection (3 μg/

ml) was carried out 48 hours after transfection for 3 to 6 days. Individual colonies were isolated

and the targeted loci were genotyped by PCR (see S1 Fig) and sequenced. Cell clones with

indels in the targeted locus were further analyzed by Western blotting.

Construction of expression vectors

The expression vector for 3xFLAG-L3MBTL2 has been described in [20]; and the expression

vectors for HA-tagged wild type E2F6 and the DNA-binding-deficient E2F6 mutant in [18].

The HA-tag was removed by BamHI/HindIII digestion and blunt-end re-ligation. For ex-

pression of 3xFLAG-tagged MGA under control of the CMV promoter, several MGA

cDNA fragments were amplified from poly(A)- and random-primed HEK293 cell cDNA

libraries, and placed stepwise into pN3-3xFLAG using conventional restriction cloning

procedures. The sequence of the cloned MGA cDNA is identical to the NCBI reference

sequence XM_005254246.2 and encodes the 3115 amino acid full-length MGA isoform

XP_005254303.1. Mutations of the MGA T-box and bHLH domains were introduced into the

wild type MGA construct by replacing appropriate wild type fragments with corresponding

mutant gBlock DNA fragments (IDT, Leuven, Belgium) using internal restriction sites of the

MGA cDNA.

Expression of MGA, L3MBTL2 and E2F6

For expression of MGA, L3MBTL2 or E2F6, the respective knockout clones were transiently

transfected with the corresponding expression plasmid using the FugeneHD transfection

reagent (Promega). Five million cells on a 15-cm dish were transfected with 20 μg of plasmid

DNA, harvested 48 hours after transfection and cross-linked chromatin was prepared. Expres-

sion of the proteins was monitored by Western blotting.

Cell growth conditions and growth curves

HEK293 cells were cultured in DMEM/F-12 + GlutaMax medium (Gibco, Thermo Fisher,

Waltham, MA) supplemented with 10% fetal bovine serum (Sigma Aldrich, St. Louis, MO)

and 1% Penicillin/Streptomycin (Sigma Aldrich). Mouse J1 ES cells were cultivated feeder-cell

free on gelatin-coated plates in DMEM + GlutaMax (Gibco, Thermo Fisher), supplemented

with 15% fetal bovine serum (Biochrom, Berlin, Germany), 1% non-essential amino acids

(Gibco, Thermo Fisher), 1% Penicillin/Streptomycin (Sigma Aldrich), 50 mM ß-Mercap-

toethanol and 1000 U/mL ESGRO leukemia inhibitory factor (Merck Millipore, Billerica,

MA). For determination of growth rates of wild type and corresponding knockout HEK293

cell lines, 3x105 cells were plated on a 6-well dish and counted in two or three days intervals as

indicated in Fig 6A. Cumulative cell numbers were calculated by multiplying the initial cell

number with the fold-increase in cell numbers in each interval.

ChIP-qPCR

ChIP experiments were performed with the One Day ChIP kit (Diagenode, Seraing, Belgium).

ChIP-qPCRs with gene-specific primers (Table 2) were performed using the ImmoMix PCR

reagent (Bioline, Luckenwalde, Germany) in the presence of 0.1 x SYBRGreen (Molecular

Probes, Thermo Fisher, Waltham, MA). Enrichment was calculated relative to input.
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ChIP-seq and data analysis

Three to four individual ChIPs were pooled and purified on QIAquick columns (Qiagen, Hil-

den, Germany). Five nanograms of precipitated DNA were used for indexed sequencing

library preparation using the Microplex library preparation kit v2 (Diagenode). Libraries were

purified on AMPure magnetic beads (Beckman Coulter, Brea, CA) and quantified on a Bioa-

nalyzer (Agilent Technologies, Santa Clara, CA). Pooled libraries were sequenced on an Illu-

mina HiSeq1500 platform (Illumina Inc., San Diego, CA), rapid-run mode, single-read 50 bp

(HiSeq SR Rapid Cluster Kit v2, HiSeq Rapid SBS Kit v2–50 cycles) according to manufacturer

´s instructions.

Raw ChIP-seq reads were aligned using Subread [47] version 1.4.3-p1. Reads matching

multiple locations were discarded during alignment. Peaks were called with MACS [48] ver-

sion1.4.0rc2 against the respective knockout control or against IgG for mouse ES cell data. Fil-

tered peaks were required to have at least 30 tags and a sequencing depth-corrected ratio over

control of 3x. Published mESC datasets (Fig 8) were retrieved from GEO and processed as

above using Subread and MACS, but were not filtered. Unions and overlaps were calculated

on an ‘at least 1bp overlap’ basis. For motif search and heatmaps, peaks were centred at their

summits and fixed sized regions extracted. Summits were defined as the point of highest read

overlap after extending the reads to 200 bp. Heatmaps show number of reads extended to 200

bp, normalized for sequencing depth. The signal distribution was truncated at the 99th percen-

tile in each sample in order to increase contrast. Regions for heatmaps were ordered by the

sum of signal in the first sample depicted. ChIP-seq signal plots shown in Figs 1F and 7E are

also based on reads extended to 200 bp. Genes were associated with a peak if the peak was

located within -2.5 kb of TSS to TES.

Motif analysis

De novo motif search including Tomtom and CentriMo was performed online with MEME--

ChIP versions 4.11.3 and 4.11.4 (http://meme-suite.org/meme_4.11.4/tools/meme-chip) [49]

within the MEME Suite (http://meme-suite.org) [50] using 300 bp sequences surrounding

peak summits (+/- 150 bp).

Table 2. Primers for ChIP-qPCR analyses.

Promoter Forward Primer 5´-3´ Reverse Primer 5´-3´

hAEBP2 AGGGGACACTCCTCAAACAC CTGCAAGTGCTCAGCGTTTC

hALDOA GACCAGAGCGGTGTTTGTAC GACCAGAGCGGTGTTTGTAC

hCCND2 TGACGGGAGGAAGGAGGTGA GCAAACACCACCACCCCTTC

hCDC7 GAGCCACAGAAGTCGTACTC CCGAACCAGATGCTTAGTGC

hCDC7 -2kb CACCTTCTTACCTCACAGAC GGGTATAGTTCAGGGTGAAG

hCDIP1 CTGGCATGAGTGAAGAGGAG AAGGAGGCGGGTAGACTTTG

hFUT9 CACCCTTCCTGCTCTTCCGT GCAGGGGAGAGCAGTGAATC

hMYT1 TCAGAGCAGGACACAGGACT TGCGAACTCCTAAGCCAGCT

hPHF20 TGAGTGGGGACTTCGTGTTC GACCAACCGACAGAAGGACT

hRFC1 GCCAAAAACCGAGCTCACAC CCATTCGCGCCAACAACTTC

hRNF130 CGCCTGACAGAGAAACAACC GGGTCAGCGGAACACAAAGT

hRPA2 CACGCCGAACAAAGGAAGTG CAGTTGGCTCCAAAAGCCTC

hSPOP ACCCTTGGCTTGTTACGCCT CCGCCTATCTTTCCTAGTGC

hTFAP4 GCCCGGACATCTGCATTTTG GTTGGGCAGGAGTGTCTACA

hTSH2B ACGCCACTTCCCATTGTCCA TGACACCTCCGGCATAGCTA

hZFR ACTACAGCTCCCAGGATGCC AGGGCATATGGGAATCATGG

https://doi.org/10.1371/journal.pgen.1007193.t002
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Gene ontology analysis

Gene Ontology (GO) analyses were performed using Enrichr (http://amp.pharm.mssm.edu/

Enrichr/) [51,52] and the DAVID 6.8 web-based tool (https://david.ncifcrf.gov) [53,54].

Expression analysis

For RNA-seq, total RNA was extracted from HEK293 cells stably transfected with the empty

pX459 vector and three different MGAko clones by using the RNeasy Mini system (Qiagen)

including an on-column DNaseI digestion. RNA integrity was assessed on an Experion (Bio-

Rad Laboratories, Hercules, CA). Sequencing libraries were generated using the TruSeq

stranded mRNA Library Preparation Kit (Illumina Inc.). Libraries were quantified on a Bioa-

nalyzer (Agilent Technologies) and subsequently sequenced on an Illumina HiSeq1500 plat-

form (Illumina Inc.), rapid-run mode, single-read 50 bp (HiSeq SR Rapid Cluster Kit v2,

HiSeq Rapid SBS Kit v2–50 cycles) according to manufacturer´s instructions.

Quantitative RT-qPCR was performed essentially as described in [20]. cDNA was synthe-

sized with the Tetro reverse transcriptase (Bioline) using one to two microgram of total RNA.

Quantitative PCR was performed in triplicates by using the ImmoMix PCR reagent (Bioline)

with gene-specific primers (Table 3). Values were normalized to GAPDH and/or B2M mRNA

content.

Databases and data availability

The source for genome sequences and annotation was Ensembl revision 83 [55]. Our ChIP-

seq and RNA-seq were deposited at ArrayExpress under accession numbers E-MTAB-6006

(ChIP-seq, HEK293), E-MTAB-6007 (ChIP-seq, mouse ES) and E-MTAB-6005 (RNA-seq,

HEK293). For assessing the overlap of PRC1.6 with other polycomb complexes in mESCs,

the following ChIP-seq data sets were used: Ring1b (GSM1041372), Rybp (GSM1041375),

Cbx6-HA (GSM2610616), Pcgf2 (GSM1657387); Cbx7 (GSM2610619), Suz12 (GSM1041374),

Kdm2b (GSM1003594) and H3K27me3 (GSM1341951).

Table 3. Primers for RT-qPCR analyses.

Gene Forward Primer 5´- 3´ Reverse Primer 5´- 3´

hB2M AGTATGCCTGCCGTGTGAAC GGAGCAACCTGCTCAGATAC

hCNTD1 AACTCCACTCCCAGTCAGCT CCACTCCGTGAGTCAGGATT

hCPEB1 TGGGTCTGACTTGGTGGACA TGACAGAGACAGGAAGGGCA

hGAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGA

hMEIOC GCTTCCAATCGGCAAAGGCA ACAGGGCAGTGCGTGTTTTC

hNOS2 CTCCCATCCTTGCATCCTCA AAACACCAAGGTCATGCGGC

hPER3 AATGTCGCCGAAGAGCCCAT GCTCCTCCTTTTGCCCATGA

hPHF20 CTCCAAAAAGGCCCTACCAG TAGTCCAGCCAGCTCTCCAA

hRAD9B GAGCATCTTCACCACAGTCAC CCACTCTTTTCATTGCAGGGC

hRPA2 CCAGGAATGAGTGAAGCAGG TCAGGTACCCAGTTAGATCCA

hSMCB1 TTCTATTCCAGAGCCGACGC GACTCTCCGTGTCTCTTGCT

hSYCE2 TAAGACTCAGATGGGGGCCA GCAGCTGTCAGCATTCACCA

hTAF7L CAGCCACAAGCAGGGTCATA CCTCATCCTCATCCTCATCC

hTRIM71 ACCCATCTGTCGTGAGTGCA ACCTCCGACTGCACAACCTT

hYBX2 CGTAAGTCCCGCCGATTCAT TGGGGCTGTCTCTTTGGGTT

hZNF239 GTGATGCTGGGCAACTACAG GTTCAGGCTCCCCATCCACT

https://doi.org/10.1371/journal.pgen.1007193.t003
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Supporting information

S1 Fig. Schematic presentation of the CRISPR/Cas-mediated generation of MGAko,

L3MBTL2ko, E2F6ko and PCGF6ko HEK293 cells. Shown are the genomic exon/intron

structures of the human MGA, L3MBTL2, E2F6 and PCGF6 genes. PAM sequences are

highlighted in red, and sgRNA targeting sequences are highlighted in blue. The location of the

PCR primers used for amplification of the targeted loci are indicated by arrowheads. Sequenc-

ing of the PCR products identified the indicated deletions, which led to frameshift mutations

and/or deletion of exon/intron boundaries.

(TIF)

S2 Fig. MGA, L3MBTL2, E2F6 and PCGF6 colocalize in HEK293 cells. (A) Knockout con-

trol cell lines identified false postive peaks. Genome browser screenshots showing false positive

PCGF6 and L3MBTL2 peaks at the BMF and PXMP2, and at the SMARCD2 and TJP3 promot-

ers, respectively. (B, C, D, E) Venn diagramms showing the overlap of filtered (F) peaks (�30

tags and�3-fold enrichment over the knockout control) with unfiltered (UF) peaks called by

MACS. (B) Filtered MGA peaks were compared with unfiltered L3MBTL2, E2F6 and PCGF6

peaks. (C) Filtered L3MBTL2 peaks were compared with unfiltered MGA, E2F6 and PCGF6

peaks. (D) Filtered E2F6 peaks were compared with unfiltered MGA, L3MBTL2 and PCGF6

peaks. (E) Filtered PCGF6 peaks were compared with unfiltered MGA, L3MBTL2 and E2F6

peaks. Representative genome browser screenshots of potentially MGA-, L3MBTL2-, E2F6 or

PCGF6-specific peaks are presented below the Venn diagramms.

(TIF)

S3 Fig. Global H2AK119ub1 levels are similar in wild type, MGAko, L3MBTL2ko, E2F6ko
and PCGF6ko cells. (A) Coomassie Blue-stained SDS gel showing acid-extracted histones [57]

of wild type (WT), L3MBTL2ko (L2ko), MGAko, E2F6ko and PCGF6ko cells. The locations of

the linker histone protein H1 and the core histone proteins H2A, H2B, H3 and H4 are indi-

cated. (B) Western blot analysis of H2AK119ub1 using the acid-extracted histone preparations

shown in panel (A). (C) Re-probing for H2B controlled loading of extracts.

(TIF)

S4 Fig. Expression of MGA is not affected in L3MBTL2ko-, E2F6ko, and PCGF6ko cells.

Western blot analysis of MGA with whole cell extracts from wild type (WT), MGAko,

L3MBTL2ko, E2F6ko and PCGF6ko HEK293 cells. Shown are uncropped Western blots. The

blots were stripped and re-probed with anti-Tubulin.

(TIF)

S5 Fig. L3MBTL2 and E2F6 promote binding of PRC1.6 differentially in a promoter-spe-

cific manner. (A) Additional genome browser screenshots of ChIP-seq tracks showing differ-

ential binding of PRC1.6 components (MGA, L3MBTL2 and E2F6) in L3MBTL2ko and

E2F6ko cells. Binding of MGA to the LACTB2 promoter was reduced in L3MBTL2ko and

E2F6ko cells. Binding of MGA to the AEBP2 and TSSK2 promoters was lost in L3MBTL2ko
cells but remained in E2F6ko cells. Conversely, binding of MGA to the TRA2B and FOXRED2
promoters was lost in E2F6ko cells but remained in L3MBTL2ko cells. (B) Local levels of

L3MBTL2, E2F6, PCGF6, MAX, RING2 and H2AK119ub1 at selected PRC1.6 target promot-

ers were determined in two different L3MBTL2ko (L2ko cl10 and L2ko cl14) and in two differ-

ent E2F6ko (E2F6ko cl1 and E2F6ko cl11) cell clones by ChIP-qPCR. The CDC7 -2kb region

served as a negative control region. Percent of input values represent the mean of at least three

independent experiments +/- SD.

(TIF)
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S6 Fig. PCGF6 is essential for RING2 recruitment. Local levels of PCGF6, MGA, L3MBTL2,

E2F6, RING2 and H2AK119ub1 at selected PRC1.6 target promoters were determined in two

different PCGF6ko cell clones (PCGF6ko cl2 and PCGF6ko cl9) by ChIP-qPCR. The CDC7
-2kb region served as a negative control region. Percent of input values represent the mean of

at least three independent experiments +/- SD.

(TIF)

S7 Fig. E2F6- and L3MBTL2-dependent binding of PRC1.6 to the meiotic CNTD1, SMC1B
and STAG3 genes. Genome browser screenshots of ChIP-seq tracks showing binding of

MGA, L3MBTL2, E2F6 and PCGF6 to the CNTD1, STAG3 and SMC1B promoters in wild type

cells (WT), and in MGAko, L3MBTL2ko, E2F6ko and PCGF6ko cells.

(TIF)

S8 Fig. Mga, L3mbtl2 and Pcgf6 colocalize in mouse ESCs. (A) Top, Venn diagrams showing

the overlap of filtered Mga (left), L3mbtl2 (middle) and Pcgf6 (right) MACS peaks (F;�30

tags and 3x over IgG) with unfiltered MACS peaks (UF) of the two other PRC1.6 subunits.

Bottom, representative genome browser screenshots of ChIP-seq tracks of potential Mga-,

L3mbtl2- or E2f6-specific peaks indicate also binding the other PRC1.6 subunits. (B) Genome

browser screenshots of ChIP-seq tracks showing multiple Mga, L3mbtl2 and Pcgf6 peaks in

promoter regions and in gene bodies. Alternative transcripts according to Ensembl are shown

above.

(TIF)
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