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Abstract

Background: The zinc finger protein Sp2 (specificity protein 2) is a member of the glutamine-rich Sp family of transcription
factors. Despite its close similarity to Sp1, Sp3 and Sp4, Sp2 does not bind to DNA or activate transcription when expressed
in mammalian cell lines. The expression pattern and the biological relevance of Sp2 in the mouse are unknown.

Methodology/Principal Findings: Whole-mount in situ hybridization of mouse embryos between E7.5 and E9.5 revealed
abundant expression in most embryonic and extra-embryonic tissues. In order to unravel the biological relevance of Sp2, we
have targeted the Sp2 gene by a tri-loxP strategy. Constitutive Sp2null and conditional Sp2cko knockout alleles were
obtained by crossings with appropriate Cre recombinase expressing mice. Constitutive disruption of the mouse Sp2 gene
(Sp2null) resulted in severe growth retardation and lethality before E9.5. Mouse embryonic fibroblasts (MEFs) derived from
Sp2null embryos at E9.5 failed to grow. Cre-mediated ablation of Sp2 in Sp2cko/cko MEFs obtained from E13.5 strongly
impaired cell proliferation.

Conclusions/Significance: Our results demonstrate that Sp2 is essential for early mouse development and autonomous
proliferation of MEFs in culture. Comparison of the Sp2 knockout phenotype with the phenotypes of Sp1, Sp3 and Sp4
knockout strains shows that, despite their structural similarity and evolutionary relationship, all four glutamine-rich
members of the Sp family of transcription factors have distinct non-redundant functions in vivo.
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Introduction

Specificity proteins (Sps) are transcription factors that control

the expression of a variety of different genes including house

keeping, tissue-specific, development-specific and cell-cycle-regu-

lated genes (reviewed in [1–4]). Nine different Sp proteins,

designated Sp1 to Sp9, have been identified in mammals [4].

They share a highly conserved zinc finger DNA-binding domain

comprising three zinc fingers at the C-terminus (ZNF), the

adjacent Buttonhead-box (Btd-box: CXCPXC), and the N-

terminal Sp-box, a stretch of conserved amino acids (SPLAL-

LAATCSK/RIG/E) of unknown function. The Sp subclass

members Sp1, Sp2, Sp3 and Sp4 are further characterized by

N-terminal glutamine-rich domains, whereas Sp5 to Sp9 contain

proline, alanine or serine/threonine-rich domains [1,4]. Sp1 and

Sp3 are ubiquitously expressed, whereas Sp4 is most prominently

found in neuronal tissues [1–3]. Sp1, Sp3 and Sp4 recognize the

same promoter elements (GC- and GT-boxes) with similar

specificity and affinity [5].

Gene targeting experiments revealed that individual Sp family

members differ in their biological function, as they exhibit distinct

phenotypes. Sp1null embryos die around embryonic day (E) 10.5

[6]. Sp3null mice develop until the end of pregnancy but die

immediately after birth due to respiratory failure [7]. Sp3null

embryos suffer from a variety of defects including impaired skeletal

bone ossification, tooth development [7,8], cardiac development

[9], and placenta organisation [10]. Newborn Sp4-deficient mice

do not show obvious abnormalities [11,12]. However, two-thirds

of the mice die within the first month after birth for unknown

reasons. Surviving Sp4-deficient animals are growth-retarded

[11,12]. Furthermore, both the male and female Sp4 null mice

have problems in reproduction; males do not breed and females

are delayed in sexual maturation [11,12]. Finally, Sp4 is required

for specification of the cardiac conduction system [13,14].

Sp2 is the least characterized member of the glutamine-rich

subgroup of Sp factors. Originally, Sp2 was cloned by virtue of the

similarity of its zinc finger domain with the zinc finger region of Sp1

[15]. Despite this similarity, Sp2 overexpressed in insect or
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mammalian cells binds poorly to DNA, and has little or no capacity

to stimulate transcription from promoters that are activated by other

Sp family members [16]. Consistently, endogenous Sp2 DNA-

binding activity in nuclear extracts prepared from cells that express

abundant amounts of Sp2 was not observed ([16], and our own

unpublished results). Sp2 is associated with the nuclear matrix and

localizes predominantly within subnuclear foci that are distinct from

promyelocytic oncogenic domains [17]. However, the functional

significance of this observation remains unclear.

Towards understanding the physiological relevance of Sp2, we

targeted the Sp2 gene and generated Sp2 loss-of-function mutants.

Sp2null embryos survive until E9.5 of gestation. They are severely

retarded in growth and show a broad range of phenotypic

abnormalities. Mouse embryonic fibroblasts (MEFs) derived from

Sp2null embryos failed to grow indicating a cell-autonomous role of

Sp2 in the control of cellular proliferation. This suggestion was

corroborated by MEFs obtained from embryos carrying floxed

Sp2 alleles (Sp2cko/cko). Cre-mediated ablation of Sp2 in Sp2cko/cko

MEFs resulted in a strong decrease of proliferation. Collectively,

we conclude that Sp2 is required for early mouse development and

autonomous proliferation of MEFs in culture.

Results

Expression of Sp2 in the Mouse Embryo
We analyzed expression of the zinc-finger transcription factor

Sp2 at early embryonic stages by whole-mount in situ hybridization

on E7.5 to E9.5 mouse embryos (Figure 1). At Theiler stage TS10

(E7.5) Sp2 is similarly expressed in embryonic as well as in extra-

embryonic tissues. At TS11 and TS12 Sp2 expression is markedly

increased in the embryonic tissues especially in the headfold. At a

later stage (TS15) strong expression of Sp2 is observed throughout

the embryo with exception of the heart. Control hybridizations

with the heart-specific markers Nkx2-5 and GATA4 confirmed the

accessibility of the heart for hybridization probes (Figure 1).

Strongest expression at this stage occurs in the neural tissues, the

neuroepithelium surrounding the optical and otic vesicles, the first

branchial arch and the forelimb buds and the auditory pit

(Figure 1). Taken together, our in situ hybridization experiments

indicate abundant expression of Sp2 in most embryonic and extra-

embryonic tissues during development.

Targeting of the Mouse Sp2 Gene
To investigate the role of Sp2 in development we generated

Sp2 knockout mice by homologous recombination in embryonic

stem cells. The open reading frame of the Sp2 gene encodes a

polypeptide of 612 amino acids with a predicted molecular

weight of 65 kDa. The entire amino acid sequence of Sp2 is

encoded by seven exons. Concerned that the loss of Sp2 might

produce early lethality, we employed a tri-loxP strategy to

generate Sp2null mice and Sp2 floxed mice, which could be used

for conditional knockout experiments. Similar to strategies that

we used previously for targeting the Sp3 and Sp4 genes, we

Figure 1. Sp2 mRNA expression in mouse embryos. Whole-mount in situ hybridization on embryos at the indicated developmental Theiler
stages (E7.5-TS10, E7.75-TS11, E8.0-TS12 and E9.5-TS15) with the indicated probes (Sp2, Sp2 sense, Nkx-2.5 and GATA4). The two embryos at E9.5
(TS15) represent two independent in situ hybridization experiments with embryos obtained from different litters. Ac, amniotic cavity; Ba, first
branchial arch; Hf, headfold; Fg, foregut; H, heart; Lb, limb bud; Nt, neuronal tissue; Op, optic pit; Ot, otic vesicle; S, somites; Tc, telencephalon. The
white arrowheads denote the boundary between embryonic and extraembryonic tissue.
doi:10.1371/journal.pone.0009587.g001

Sp2 Knockout Mice
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targeted exon 3, a large exon that encodes for most of the N-

terminal part of Sp2 including the Sp-box and two glutamine-rich

regions (Figure 2A). As Sp2 mRNA is expressed in mouse ES cells

(data not shown) the targeting strategy allowed expression of a

lacZ-neo fusion gene under the control of the endogenous Sp2

promoter (Figure 2A). Southern blot (Figure 2B) and PCR

analyses (Figure 2C) revealed successful homologous recombina-

tion in 8 out of 80 ES cell clones analyzed.

Mice heterozygous for the targeted Sp2 allele (Sp2wt/lzn) were

obtained after injection of ES cells into blastocysts and

subsequent crossing of the chimeric animals with wild type

mice. Sp2wt/lzn mice are viable, reproduce normally and

display no obvious abnormalities. Whole-mount LacZ staining

on E12.5 embryos confirmed the notion that Sp2 is widely if not

ubiquitously expressed during development (Figure 3A). As we

expected that the insertion of the IRES-lacZ-neo cassette would

result in impaired Sp2 expression, we crossed Sp2wt/lzn mice to

homozygosity. Northern blot analyses revealed aberrant Sp2

mRNA expression (Figure 3B). The 7 kb transcript expressed

from the Sp2lzn allele represents an RNA species containing

exon 1 to 3 of the Sp2 gene fused to LacZ-neo sequences. RT-

PCR analysis revealed that regions downstream of exon 3 are

not expressed from the Sp2lzn allele (Figure 3C). The presence

of an mRNA species containing Sp2 coding sequences was

expected to result in expression of an N-terminal Sp2 fragment.

Immunoblot analysis revealed the absence of the full-length Sp2

protein; a truncated Sp2 N-terminal fragment, however, was not

detected (Figure 3D). Control experiments with recombinant

Sp2 fragments showed that our Sp2 antiserum can detect the N-

terminal part of Sp2 (data not shown). Likely, expression of the

Sp2 N-terminal domain in Sp2lzn/lzn mice is below the

detection limit.

Impaired Development of Targeted Sp2lzn/lzn Mice
Genotyping of 91 10-day-old pups from heterozygous Sp2wt/lzn

intercrosses revealed wild type and heterozygous animals at the

expected 1:2 ratio. Only one homozygous Sp2lzn/lzn mutant pup

was found. This pub died before genotyping was finished and

could not be examined. We then examined intercross embryos at

E9.5 through E18.5 (Table 1). Overall, Sp2lzn/lzn embryos at

E16.5 and E18.5 were smaller than their wild type and

heterozygous littermates. They were generally developmentally

retarded, albeit with considerable variation (Figure 4). Moreover,

many of the Sp2lzn/lzn embryos were already dead at these

developmental stages. In contrast, Sp2lzn/lzn embryos at E12.5

had a normal body size. However, they displayed hemorrhaging,

predominantly in the head area (Figure 4). At E9.5 Sp2lzn/lzn

embryos appeared apparently normal. Taken together the various

Figure 2. Targeting strategy for the mouse Sp2 gene. A) Schematic representation of the Sp2 protein structure, the wild type Sp2 allele, the
targeting vector and the targeted Sp2lzn allele. The Sp-box (Sp), two glutamine-rich domains (Q-rich), the btd-box (btd) and the three zinc fingers
(ZnF) of the Sp2 protein are indicated. Connecting lines with the corresponding murine Sp2 gene region indicate the derivation of N-terminal parts of
the Sp2 protein. The Sp-box and two glutamine-rich regions are encoded by exon 3. In the targeted Sp2 locus exon 3 and the IRES-lacZ-neo cassette
are floxed (black arrowheads). White arrowheads depict PCR primer locations (P1, P2 and P3). S, SacI sites. B) Southern blot analysis of transfected ES
cells for the Sp2wt allele (6.9 kb) and the targeted Sp2lzn allele (3.2 kb) using SacI-restricted genomic DNA and the 387 bp probe indicated in
Figure 2A. C) PCR analysis of E13.5 embryos for the Sp2lzn allele with the indicated primer combination (P1, P2 and P3).
doi:10.1371/journal.pone.0009587.g002

Sp2 Knockout Mice
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developmental defects displayed by Sp2lzn/lzn mutant embryos

indicate that Sp2 is required for normal embryonic development

at late embryonic stages.

Early Embryonic Lethality of Sp2null Mice
Northern blot and PCR analyses of tissues form Sp2lzn/lzn

embryos revealed aberrant mRNA expression from the targeted

Sp2 locus. As expression of small amounts of N-terminal

sequences of Sp2 could result in a hypomorphic phenotype we

generated Sp2null mice by crossing heterozygous Sp2wt/lzn

animals with CAG-Cre mice that express the Cre recombinase

under control of the cytomegalovirus immediate early enhancer-

chicken b-actin hybrid (CAG) promoter [18]. The resulting

heterozygous Sp2wt/ko mice were healthy and fertile, and were

intercrossed to generate Sp2null mice (Figure 5). Surprisingly, the

phenotype of Sp2null embryos differs markedly from that of

Sp2lzn/lzn embryos, strongly suggesting that the insertion of the

LacZ-neo fusion gene into the third intron did not disrupt Sp2

functions completely.

No Sp2null embryos were found alive beyond E10.5 (Table 2).

The few Sp2null embryos recovered at E12.5 to E13.5 were almost

completely reabsorbed. Embryos at E9.5 and earlier stages

displayed genotype distributions close to the expected Mendelian

ratios (Table 2).

Figure 3. Aberrant Sp2 mRNA expression in Sp2lzn/lzn mice. A) Whole-mount lacZ staining of E12.5 embryos with the indicated genotypes. B)
Northern blot analysis of total RNA extracted from E18.5 embryos. RNA size markers are indicated on the left side. The 18S rRNA signal depicts the
loading control. The wild type Sp2 mRNA and the aberrant Sp2-IRES-LacZ-Neo mRNA are drawn schematically along with the Northern probe and the
primers Pex4 and Pex5 used for the PCR analysis shown in Figure 3C. The numbers 1 to 7 indicate the derivation of mRNA sequences from exons. C)
Absence of RNA derived from exons 4 and 5 in Sp2lzn/lzn mice. RT-PCR was performed with RNA from liver (L) and brain (B) of Sp2lzn/lzn, Sp2wt/lzn
and Sp2wt/wt embryos using the primers Pex4 and Pex5 indicated in Figure 3B. Amplification of cyclophilin (Cyc) mRNA sequences was used as a
positive control. D) Western blot analysis of Sp2 using extracts from primary mouse embryonic fibroblasts derived from E13.5 embryos with the
indicated genotypes. The asterisks denote cross-reacting proteins that serve as internal loading control.
doi:10.1371/journal.pone.0009587.g003

Table 1. Genotype distribution of Sp2wt/lzn intercrossings.

Sp2wt/lzn x Sp2wt/lzn Sp2wt/wt Sp2wt/lzn Sp2lzn/lzn

Born n = 91 (100%) 26 (28.6%) 64 (70.3%) 1* (1.1%)

E18.5 n = 54 (100%) 13 (24.1%) 31 (57.4%) 10 (18.5%)

E16.5 n = 13 (100%) 3 (23.1) 7 (53.8%) 3 (23.1)

E13.5 n = 72 (100%) 21 (29.2%) 36 (50.0%) 15 (20.8%)

E12.5 n = 106 (100%) 27 (25.5%) 50 (47.2%) 29 (27.4%)

E9.5 n = 51 (100%) 16 (31.4%) 22 (43.1%) 13 (25.5%)

P, postnatal day; E, day of embryonic development; n, number of mice/
embryos.
*died two weeks after birth.
doi:10.1371/journal.pone.0009587.t001

Sp2 Knockout Mice
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Figure 4. Impaired development of Sp2lzn/lzn embryos. A) Sp2lzn/lzn embryos at E18.5, E16.5 and E12.5 representing typical phenotypic
variants. Sp2lzn/lzn embryos at E12.5 have a normal body size but display hemorrhaging predominantly at the head. B) Embryo size distribution at
E12.5 and E18.5. The number of embryos analyzed is indicated at the bottom of the bars.
doi:10.1371/journal.pone.0009587.g004

Figure 5. Generation of Sp2null mice. (A) Mice carrying an Sp2null allele were obtained by crossing heterozygous Sp2wt/lzn mice with CAG-Cre
mice [18] thereby removing the selection marker (IRES-LacZ-Neo) and exon 3. Black arrowheads depict loxP sites, white arrowheads indicate PCR
primer locations. B) PCR analysis of the Sp2 wild type (wt) and the knockout (ko) allele using primers P1, P2 and P4 indicated in panel A. C)
Immunoblot analysis of Sp2 in extracts of primary mouse embryonic fibroblasts derived from E9.5 embryos with the indicated genotype. The asterisk
denotes a cross-reacting protein.
doi:10.1371/journal.pone.0009587.g005

Sp2 Knockout Mice
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Sp2null embryos developed until the nine somite stage but failed

to undergo body turning. At E9.5 Sp2null embryos were much

smaller than their littermates (Figure 6A). However, heartbeat and

superficial attachment of the allantois to the chorion were

observed. Generally, the appearance of E9.5 Sp2null embryos

was very similar to E8.5 wild type and heterozygous embryos

(Figure 6B) indicating a general developmental delay. This

conclusion is supported by serial longitudinal sections that revealed

that E9 Sp2 knockout embryos have an open cranial neural tube

(Figure 6C) typical for E8 wild type or Sp2 heterozygous embryos.

Growth and developmental retardation of Sp2-deficient em-

bryos were already visible at E7.5 exemplified by the expression

pattern of the mesodermal marker Brachyury. At this stage wild type

and heterozygous Sp2 embryos displayed intense Brachyury

expression. Expression of Brachyury in the smaller Sp2null

littermates, however, was very weak (Figure 6D) resembling

expression of Brachyury in the nascent primitive streak at the onset

of gastrulation of E6.5 embryos [19,20].

Generation of Conditional Sp2 Knockout Mice (Sp2cko/
cko Mice)

As inactivation of Sp2 is mid-gestational lethal we decided to

generate mice with floxed exon 3 lacking the IRES-LacZ-neo

cassette that would allow inactivating Sp2 in a stage-specific

manner as well as in cell lines derived from these mice. Generation

of such a conditional Sp2 knockout allele (Sp2cko allele) could be

accomplished by selective removal of the IRES-lacZ-neo cassette

upon partial Cre-loxP recombination (Figure 7). Injection of

fertilized eggs with different concentrations of Cre RNA [21]

resulted either in complete excision of exon 3 and the IRES-lacZ-

neo cassette or excision of exon 3, but never in excision of only the

Table 2. Genotype distribution of Sp2wt/ko intercrossings.

Sp2wt/ko x Sp2wt/ko Sp2wt/wt Sp2wt/ko Sp2null

P10 n = 81 (100%) 34 (42%) 47 (58%) 0 (0%)

E17.5 n = 7 (100%) 3 (42.9%) 4 (57.1%) 0 (0%)

E13.5 n = 8 (100%) 0 (0.0%) 8 (88.9%) 1* (11.1%)

E12.5 n = 23 (100%) 7 (26.9%) 16 (61.5%) 3* (11.5%)

E10.5 n = 39 (100%) 18 (46.2%) 20 (51.3%) 1 (2.6%)

E9.5 n = 303 (100%) 69 (22.8%) 166 (54.8%) 68+ (22.4%)

E8.5 n = 34 (100%) 10 (29.4%) 16 (47.1%) 7 (20.6%)

E7.5 n = 9 (100%) 1 (11.1%) 6 (66.7%) 2 (22.2%)

P, postnatal day; E, day of embryonic development; n, number of mice/
embryos.
*embryos were dead and reabsorbed.
+7 out of 68 embryos were reabsorbed.
doi:10.1371/journal.pone.0009587.t002

Figure 6. Phenotype of Sp2null embryos. A) An Sp2null embryo at E9.5 in comparison to wild type (Sp2wt) and heterozygous (Sp2+/2)
littermates. B) An Sp2null embryo at E9.5 in direct comparison to an E8.5 wild type embryo (Sp2wt). C) Serial longitudinal sections of heterozygous Sp2
(Sp2+/2) and Sp2null embryos from day E9.0. Sp2null embryos are smaller, have not turned and have an open cranial neural tube (Nt). Ne, neural
epithelium. D) Whole-mount in situ hybridization on E7.5 embryos using the mesodermal marker Brachyury as a probe.
doi:10.1371/journal.pone.0009587.g006

Sp2 Knockout Mice
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IRES-lacZ-neo cassette. Therefore, we employed an in vivo

approach.

MeuCre40 (mosaic-early embryonic-ubiquitous Cre transgene), a

transgenic mouse line that has been shown to generate partial

mosaic Cre-loxP recombination patterns in the early embryo [22],

were crossed with heterozygous Sp2wt/lzn mice. This resulted in

mosaicism for recombination events at the Sp2lzn locus that was

transmitted through the germline. After back crossing mosaic

animals to wild type mice we found a single female, out of 130

progeny analysed, that carried an allele with the desired floxed

exon 3 but lacking the IRES-lacZ-neo cassette (Sp2wt/cko)

(Figure 7B), the Sp2null allele and Cre recombinase. Crossing of

the single Sp2wt/cko female with wild type mice resulted also in

male Sp2wt/cko animals.

Homozygous Sp2cko/cko mice in which both Sp2 alleles are

floxed, were obtained by intercrossing of Sp2wt/cko mice.

Consistent with wild type Sp2 protein expression from the floxed

Sp2 locus (Figure 7C), Sp2cko/cko mice are phenotypically

indistinguishable from wild type animals.

Sp2 Is Essential for Proliferation of Mouse Embryonic
Fibroblasts

Mouse embryonic fibroblasts (MEFs) obtained from E9.5

Sp2null embryos became flat-shaped and did not divide, whereas

wild type and heterozygous MEFs derived from siblings grew

normally. The lack of proliferation of MEFs obtained from E9.5

Sp2null embryos could reflect the developmental retardation of

these embryos or could be due to the lack of Sp2. To explore

directly the potential role of Sp2 in cellular proliferation of MEFs

we isolated MEFs carrying floxed Sp2 alleles (Sp2cko/cko) from

E13.5 embryos. Sp2cko/cko MEFs and corresponding wild type and

heterozygous MEFs (Sp2wt/cko) were immortalized by serial

passages of primary MEFs until they pass their growth-crisis

stage. Infection of Sp2cko/cko MEFs with a retrovirus expressing

Cre recombinase resulted in a time-dependent deletion of the

floxed Sp2 alleles and complete loss of the Sp2 protein at seven

days post-infection (Figure 8).

Consistent with previous reports [23,24] continuous Cre

expression in wild type cells slightly decreased growth (Figure 9).

However, Cre-mediated ablation of Sp2 in Sp2cko/cko MEFs

resulted in strongly reduced proliferation relative to control

retrovirus-infected cells (Figure 9). This finding together with the

observation that MEFs derived from Sp2null embryos do not

proliferate suggest a role of Sp2 in the control of cellular

proliferation.

To further substantiate the conclusion that Sp2 is essential for

proliferation of MEFs, we performed rescue experiments

(Figure 10). First we infected Sp2cko/cko MEFs with a retroviral

expression vector for Sp2 (pBABE-vSp2-puro), using infection with

the corresponding empty vector (pBABE-puro) as a control. The

resulting Sp2cko/cko-vSp2 MEFs expressed Sp2 ectopically in

addition to endogenous Sp2. Cre-mediated ablation of endoge-

nous Sp2 in Sp2cko/cko-pBABE-puro MEFs inhibited cell growth

(compare -Cre and +Cre growth curves in Figure 10A). Retroviral

Cre-infection of Sp2cko/cko-vSp2 led to a complete depletion of the

floxed Sp2 alleles as well (Figure 10B). However, expression of

ectopic Sp2 was unchanged (Figure 10C), and proliferation of

these MEFs was affected much less severe (compare +Cre and

+Cre+vSp2 growth curves in Figure 10A). These findings reinforce

the conclusion that Sp2 plays an essential role in cell proliferation.

Discussion

Sp2 was originally identified by virtue of the similarity of its zinc

finger region with the DNA-binding domain of Sp1 [15]. It is

Figure 7. Generation of conditional Sp2 mice (Sp2cko/cko mice). A) Crossing of heterozygous Sp2wt/lzn mice with MeuCre40 mice resulted in
generation of an Sp2cko allele in which the lacZ-Neo fusion gene is absent. B) PCR analysis of the Sp2 wild type (wt), Sp2-IRES-lacZ-Neo (lzn) and
Sp2cko (cko) alleles with the indicated primers. C) Western blot analysis of Sp2 in extracts of Sp2cko/cko, Sp2cko/wt and Sp2wt/wt MEFs.
doi:10.1371/journal.pone.0009587.g007

Sp2 Knockout Mice
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expressed in many different human and mouse cell lines [16]

suggesting wide-spread expression in vivo. Our Sp2 expression

analysis in mouse embryos supports this notion. Mouse Sp2

mRNA is detectable in embryonic stem cells and in all tissues

during different stages of mouse embryogenesis, with exception of

the heart. In Western blots, the mouse Sp2 protein appears as a

double band. Whether this is due to posttranslational modifica-

tions or reflects splice variants is unknown at this stage.

Insertion of the IRES-lacZ-Neo cassette into the third intron of

the Sp2 gene resulted in aberrant expression of an Sp2-lacZ-neo

fusion RNA in Sp2lzn/lzn mice. Although no Sp2 protein,

neither full-length nor a C-terminal truncated fragment was

detectable, it is very likely that the glutamine-rich N-terminal

part of Sp2 is expressed at a very low level. This would explain

why the Sp2lzn/lzn embryos display a markedly less severe

phenotype when compared to Sp2null embryos. Sp2lzn/lzn

embryos alive are found beyond E12.5 whereas disruption of

the Sp2 gene in Sp2null embryos causes severe developmental

retardation and embryonic lethality before E9.5. The different

phenotypes of Sp2lzn/lzn and Sp2null mice indicates that the

glutamine-rich N-terminal part of Sp2 has a function indepen-

dent of the C-terminal zinc finger domain that is believed to be

responsible for DNA-binding [16].

No particular cell lineage or developmental process appears to

be affected in Sp2null embryos. Rather, Sp2-deficiency causes a

general cellular defect that precludes normal progression of

development resulting in early embryonic lethality. This conclu-

sion is consistent with the observation that MEFs derived from

E9.5 Sp2null embryos did not grow in culture. Moreover, Sp2lzn/

lzn MEFs derived from E13.5 embryos stopped growing in culture

and repeatedly died after the first passage whereas MEFs from

wild type and Sp2wt/lzn littermates grew normally. Finally, Cre-

mediated ablation of Sp2 in Sp2cko/cko MEFs severely impaired

proliferation that could be rescued by ectopic expression of

exogenous Sp2. Altogether, these findings strongly suggest that

Sp2 is essential for the autonomous growth of MEFs in culture.

Further analyses will be necessary to unravel the cellular processes

that are responsible for the growth arrest of Sp2-depleted MEFs

and to identify key target genes of Sp2. Furthermore, the mice

carrying floxed Sp2 alleles described here will allow for the analysis

of the role of Sp2 in distinct cell types and in adult animals.

In conclusion, we have shown that Sp2 is required for normal

progression of embryonic development, and that it is essential for

survival of mouse embryos after E9.5. Sp2-deficient MEFs fail to

grow in vitro, strongly indicating that the lack of Sp2 causes a cell-

autonomous proliferation defect in these cells. Our data further

strengthen the notion that, despite their structural similarities, Sp1,

Sp2, Sp3 and Sp4 have non-redundant important functions during

mouse development. Future research in our laboratories will be

aimed at understanding the molecular basis for these distinct

functions. Conditional knockout alleles, such as described here for

the Sp2 gene, are essential tools to perform these studies.

Materials and Methods

Ethics Statement
Research involving mice have been conducted according to the

German Animal Protection Law (Tierschutzgesetz). The applica-

tion for the experiments was reviewed and approved by the

responsible local authorities (Regierungspräsidium Giessen, refer-

ence number V 54 - 19 c 20/15 cMR20/27).

Whole-Mount b-Gal Staining and In Situ Hybridization
Whole-mount b-galactosidase staining of E13.5 embryos was

performed according to Tewari et al. [25]. Whole-mount RNA in

situ hybridization was performed essentially as described [26] using

BM purple (Roche) as color substrate. For Sp2 mRNA detection,

we used a 903 bp digoxygenin-labeled fragment of exon 3

(nucleotides 183 to 1085 of mouse Sp2 cDNA) cloned in pcDNA3.

Appropriate plasmids to generate probes for Brachyury (T) and

Nkx2-5 were obtained from Martin Eilers and Thomas Braun,

respectively. The GATA4 probe is described in [9].

Generation of Sp2-Specific Antibodies and Immunoblot
A polyclonal antiserum against mouse Sp2 was generated by

immunization of New Zealand White rabbits with recombinant

full-length mouse Sp2 protein expressed in E. coli according to

standard procedures. The antiserum was subsequently affinity-

Figure 8. Depletion of Sp2 in Sp2cko/cko MEFs upon retroviral Cre-infection. A) Schematic presentation of the Sp2cko allele and the Sp2null
allele obtained after retroviral Cre infection along with the positions of the primers used for genotyping. B) PCR analysis of Cre-infected Sp2cko/cko
MEFs at various time points post-infection as indicated. C) Western blot analysis of Sp2 in Cre-infected Sp2cko/cko and Sp2wt/wt MEFs at various time
points post-infection as indicated. The asterisk indicates a cross-reacting protein. To control for loading, the same blot was re-stained for Sp1.
doi:10.1371/journal.pone.0009587.g008
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purified using immobilized recombinant Sp2. For immunoblots,

whole cell extracts from MEFs were separated through 6% SDS-

polyacrylamide gels and blotted to PVDF membranes. Primary

antibodies were visualized with the Amersham ECL kit.

Generation of Sp2lzn Mutant Mice
A cosmid clone containing exons 2 and 3 as well as flanking

intron sequences of the murine Sp2 gene was isolated from a

mouse 129/ola library at the German Science Centre for

Genome Research (RZPD). A targeting vector was designed to

flank exon 3 of the Sp2 gene and the selection marker with loxP

sites as follows. As starting vector, we used the pPNT plasmid

containing the pgk-driven neomycin resistance gene (pgk-neo) and

the herpes simplex thymidine kinase (hsv-tk) gene [27]. LoxP sites

flanking the pgk-neo cassette were inserted as synthetic XbaI-SalI-

LoxP-KpnI and NotI-XhoI-LoxP-SalI-[XhoI] oligonucleotides. A

1.8 kb fragment of intron 3 obtained by PCR was cloned into

the EcoRI site located between pgk-neo and hsv-tk. A fragment

containing exon 3 and flanking intron sequences was cloned as a

1.6 kb NotI-XhoI PCR fragment upstream of the floxed pgk-neo

cassette. A third loxP site was then inserted as NotI-BamHI-LoxP-

[NotI] oligonucleotide. Subsequently, a 3.2 kb Sp2 genomic

fragment containing exon 2 and flanking intron sequences was

inserted as NotI-BamHI PCR fragment. Finally, we replaced pgk-

neo by an SA-IRES-lacZ-neo-SVpA cassette obtained as a 7.4 kb SalI

fragment from pGT1.8Iresbgeo [28]. More detailed information

concerning the generation of the targeting vector will be provided

upon request. We verified all of the constructs by restriction

analysis and sequencing. The functionality of the loxP sites in the

final targeting vector was analyzed by appropriate restriction

digests after transformation into the Cre-expressing E. coli strain

294-Cre [29].

Figure 9. Sp2 is required for proliferation of MEFs. A) MEFs with the indicated genotypes were infected with a Cre-expressing (+ Cre) or an
empty control (- Cre) retrovirus, selected with puromycin for seven days and subsequently replated for determination of growth curves. The two
growth curves were performed with two different Sp2cko/cko lines. Results are presented as fold increase in cell number relative to time 0. The insert
in the upper panel shows a crystal violet staining of Sp2cko/cko MEFs infected with an empty retrovirus (- Cre) or a Cre-expressing retrovirus (+ Cre). B)
PCR analyses of genomic DNA from Sp2wt/wt, Sp2wt/cko and Sp2cko/cko MEFs at day 0 of the growth curve determinations using the primer
combination P1, P2, P4. C) Immunoblot analysis of Sp2 with MEF extracts of the indicated genotype.
doi:10.1371/journal.pone.0009587.g009
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The targeting construct was introduced into C57BL/66129/

Ola F1 hybrid ES cells by electroporation and G418 resistant

clones were screened for homologous recombination by

Southern blotting using a 387 bp fragment overlapping intron

3 and exon 4 (Figure 2A). ES cells with a targeted Sp2 allele

were injected into blastocysts. Blastocysts were transferred to

pseudopregnant females and chimeric offspring were identified

by PCR. Chimeric mice were crossed to heterozygosity resulting

in Sp2wt/lzn mice.

Generation of Sp2null Mutant Mice
To generate an Sp2null allele, heterozygous Sp2wt/lzn mice were

mated with CAG-Cre mice [18]. The resulting heterozygous Sp2wt/

ko mice were intercrossed to generate Sp2null mice.

Generation of Conditional Sp2cko/cko Mice
Mosaic, early embryonic, ubiquitous Cre mice (MeuCre40)

[22] were crossed with Sp2wt/lzn mice to remove the LacZ-Neo

selection cassette from the Sp2 tri-loxP-allele. The F1 generation

was screened for the presence of the Cre gene and partial

recombination of the tri-loxP allele. Mice with partial and

mosaic patterns, eg positive for Cre and the floxed exon 3

(primers P6–P7), were then mated with C57Bl/6 mice for

segregation of the Cre-recombined alleles from MeuCre40 in the

F2 generation.

Genotyping Embryos and MEFs by PCR
The following primers and amplicons were used for genotyping

(see Figures 2, 5, 7 and 8 for orientation):

Primers:

P1: 59-CCCTCTCAGAACTTTCAGATC-39

P2: 59-CTTAGGAGGGATCTAGACTAG-39

P3: 59- CATCGCCTTCTATCGCCTTCTTGA-39

P4: 59- ACCGAGAGCAAGTTCATGTC-39

P5: 59- GCTATTGCTCTTGTCTTTAGC-39

P6: 59-TATCCCTGCGGATCCATAACT-39

P7: 59-GGATACTTGCATTTGATCGGC-39

vSp2: 59-TCAGCCCACTGATAGTCAGG-39

Cre 39: 59-CGATGCAACGAGTGATGAGGTTC-39

Cre 59: 59-GCACGTTCACCGGCATCAAC-39

Pex4: 59-ATTCAGCTGCCATTCTCCGA-39

Pex5: 59-AGCCCACTGATAGTCAGGTT-39

Amplicons:

Sp2 wild type allele: P1–P2: 760 bp; P1–P5: 457 bp

Lzn allele: P2–P3: 950 bp

Sp2null allele: P2–P4: 550 bp

Sp2cko allele: P1–P5: 487 bp

Lzn and Sp2cko alleles: P6–P7: 620 bp

pBABE-vSp2-puro: P1-vSp2: 421 bp

Sp2 cDNA: Pex4-Pex5: 229 bp

Northern Blot Analysis
Northern blot analysis was performed according to standard

protocols with 20 mg of total RNA extracted from E18.5 embryos

using a 32P-labeled 1.4 kb Sp2 cDNA probe encompassing exons 2

to 5 (Figure 3B).

Plasmids and Retroviral Infections
The pBABE-Cre-puro plasmid was previously described [30].

The retroviral pWLZ-Cre-neo plasmid was generated by cloning

the Cre recombinase from pBABE-Cre-puro as a [XhoI]-EcoRI

fragment into the [BamHI]-EcoRI-restricted pWLZ vector. The

retroviral expression plasmid for Sp2 (pBABE-Sp2-puro) was

obtained by cloning the full-length Sp2 cDNA into the BamHI

site of pBABE-puro.

High-titre viruses were produced by transient transfection of

retroviral constructs into the Phoenix-Eco packaging cell line using

FuGENE HD transfection reagent (Roche) according to standard

procedures. Retrovirally infected MEFs were selected with

appropriate antibiotics using the following concentrations: 2 mg/

mL of puromycin and 1 mg/mL of G418.

Determination of Growth Curves
MEFs were isolated from E9.5 and E13.5 embryos using

standard methods. MEFs were immortalized by serial passages of

primary MEFs. After retroviral infection MEFs were selected with

appropriate antibiotics for seven days. Subsequently, 2.56104 cells

were plated on 6-cm dishes and duplicates were counted after 2, 4

and 6 days.

Histology
Embryos were dissected and a tail snip or the yolk sac was

removed for genotyping. Embryos were fixed in Carnoy’s

solution (60% ethanol, 30% chloroform, 10% acetic acid) at

4uC overnight and embedded in paraffin according to standard

procedures. Sections (8 mm) were stained with hematoxylin and

eosin.

Figure 10. Partial rescue of proliferation by expression of
exogenous Sp2. A) Sp2cko/cko MEFs expressing exogenous Sp2
(vSp2) were infected with an empty control (- Cre) or a Cre-
expressing retrovirus (+ Cre), selected for seven days with puromycin
and subsequently replated for determination of the proliferation
rates. Results are presented as fold increase in cell number relative
to time 0. B) PCR analysis of Sp2cko/cko MEFs containing a retroviral
expression vector for Sp2 (vSp2). The primer combination P1, P2, P4,
vSp2 was used for amplification of the Sp2cko allele (P1–P2, 790 bp),
the Sp2ko allele (P2–P4, 550 bp) and the Sp2 cDNA (P1-vSp2,
421 bp). C) Western blot analysis of Sp2 in control and Cre-infected
Sp2cko/cko and Sp2cko/cko-vSp2 MEFs. The asterisk indicates a cross-
reacting band. To control for loading, the same blot was re-stained
for Sp1.
doi:10.1371/journal.pone.0009587.g010

Sp2 Knockout Mice

PLoS ONE | www.plosone.org 10 March 2010 | Volume 5 | Issue 3 | e9587



Acknowledgments

We thank Iris Rohner and Waltraud Sperling for excellent technical

assistance. Martin Holzenberger generously provided MeuCre40 mice. The

pBABE-Cre-puro plasmid was a gift from Kay-Uwe Wagner.

Author Contributions

Conceived and designed the experiments: SP GS. Performed the

experiments: FB KN DS LA HPE NG TdW IK MV. Analyzed the data:

FB KN DS LA HPE SP GS. Wrote the paper: SP GS.

References

1. Bouwman P, Philipsen S (2002) Regulation of the activity of Sp1-related

transcription factors. Mol Cell Endocrinol 195: 27–38.
2. Philipsen S, Suske G (1999) A tale of three fingers: the family of mammalian Sp/

XKLF transcription factors. Nucleic Acids Res 27: 2991–3000.
3. Suske G (1999) The Sp-family of transcription factors. Gene 238: 291–300.

4. Suske G, Bruford E, Philipsen S (2005) Mammalian SP/KLF transcription

factors: bring in the family. Genomics 85: 551–556.
5. Hagen G, Müller S, Beato M, Suske G (1992) Cloning by recognition site

screening of two novel GT box binding proteins: a family of Sp1 related genes.
Nucleic Acids Res 20: 5519–5525.

6. Marin M, Karis A, Visser P, Grosveld F, Philipsen S (1997) Transcription factor
Sp1 is essential for early development but dispensable for cell growth and

differentiation. Cell 89: 619–628.
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