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Ovarian cancer is characterized by early transcoelomic
metastatic spread via the peritoneal fluid, where tumor
cell spheroids (TU), tumor-associated T cells (TAT), and
macrophages (TAM) create a unique microenvironment
promoting cancer progression, chemoresistance, and im-
munosuppression. However, the underlying signaling
mechanisms remain largely obscure. To chart these sig-
naling networks, we performed comprehensive proteomic
and transcriptomic analyses of TU, TAT, and TAM from
ascites of ovarian cancer patients. We identify multiple
intercellular signaling pathways driven by protein or lipid
mediators that are associated with clinical outcome. Be-
yond cytokines, chemokines and growth factors, these
include proteins of the extracellular matrix, immune
checkpoint regulators, complement factors, and a prom-
inent network of axon guidance molecules of the ephrin,
semaphorin, and slit families. Intriguingly, both TU and
TAM from patients with a predicted short survival se-

lectively produce mediators supporting prometastatic
events, including matrix remodeling, stemness, invasion,
angiogenesis, and immunosuppression, whereas TAM as-
sociated with a longer survival express cytokines linked to
effector T-cell chemoattraction and activation. In sum-
mary, our study uncovers previously unrecognized signal-
ing networks in the ovarian cancer microenvironment that
are of potential clinical relevance. Molecular & Cellular
Proteomics 17: 10.1074/mcp.RA117.000400, 270–289,
2018.

High grade serous ovarian adenocarcinoma (HGSOC)1 is
the most common ovarian cancer subtype and the most lethal
of all gynecologic malignancies. It ranks fifth as the cause of
death from cancer in women (1). Although most HGSOCs are
highly sensitive to first-line adjuvant chemotherapy, the dis-
ease has an overall 5-year survival rate of less than 40%.
Several features characteristic of HGSOC contribute to its
fatal nature, including the shedding of tumor cells at a very
early stage of the disease, their spreading to other pelvic and
peritoneal organs via the peritoneal fluid to form transcoelo-
mic metastases, and the tumor-promoting and immune sup-
pressive effect of the peritoneal tumor microenvironment
(TME) (2).

The peritoneal fluid, occurring as malignancy-associated
ascites in the majority of HGSOC patients, contains large
numbers of tumor cell spheroids with tumor-initiating “stem-
like” properties, tumor-associated macrophages (TAM) and
tumor-associated CD8! T cells (TAT) (3–5). Tumor cell spher-
oids are likely to play a pivotal role in transcoelomic metas-
tasis, because they can adhere to, and invade into, the serous
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membranes of the peritoneum and the omentum. This in-
volves complex interactions with the mesothelium and the un-
derlying extracellular matrix (ECM), which are only partially un-
derstood (5–7). Furthermore, spheroids are thought to
contribute to chemotherapy failure by transiently entering a
chemoresistant state characterized by low proliferative and
metabolic activity, thereby providing a protective niche (2).

TAM of the HGSOC microenvironment are derived from
resident peritoneal macrophages and/or blood monocytes (8).
They do not exert antitumor activities, but rather promote
cancer progression, tumor growth and metastasis as well as
immune suppression (9–12). Consistent with their tumor-pro-
moting functions, TAM expressing high levels of the scav-
enger receptor CD163 and the mannose receptor CD206/
MRC1 are immunosuppressive and predictive of an early
relapse of ovarian carcinoma after first-line therapy (13–15).
The presumably central role of TAM in cancer cell adhesion
and invasion remains a largely unresolved question.

The HGSOC microenvironment harbors different types of
TAT with opposing effects on tumor progression and disease
outcome (16, 17). Although the accumulation of intra-tumoral
CD8! T cells in ovarian carcinoma patients is strongly asso-
ciated with increased levels of IFN! and a longer survival
(17–19), the T-regulatory cell (Treg) subpopulation of tumor-
associated CD4! T cells is instrumental in immunosuppres-
sion (20, 21) and linked to an adverse clinical course (16, 22).
Ascites has strong inhibitory properties on CD8! T-cell acti-
vation and promotes Treg formation, in part through immu-
nosuppressive cytokines, such as IL-10 and TGF" (23). How-
ever, the network of immune modulatory mediators impinging
on T cells is far from understood.

Elucidating the intricate signaling network among these dif-
ferent cell types of the HGSOC microenvironment is essential to
understand their contributions to tumor growth, progression
and response to therapies. Prerequisite protein expression anal-
yses of the HGSOC microenvironment are, however, not avail-
able to date. Here, we present the results of global, cell type-
specific, parallel proteomic and transcriptomic analyses of
tumor cell spheroids, TAT and TAM in the peritoneal HGSOC
microenvironment. Our integrated study reveals multiple, previ-
ously unrecognized intercellular signaling pathways in the HG-
SOC microenvironment, which control cancer cell adhesion,
invasion and metastasis as well as immunosurveillance, and are
strongly associated with patient survival.

EXPERIMENTAL PROCEDURES

Patient Samples—Ascites was collected from patients with histo-
logically verified HGSOC undergoing primary surgery at the University
Hospital in Marburg. Informed consent was obtained from all patients
according to the protocols approved by the local ethical committee.
For transcriptomic analyses, cells from 33 patients were analyzed; for
proteomic analyses, cells from 9 patients were analyzed. Patient
characteristics are presented in supplemental Table S1. Clinical
courses were evaluated by RECIST criteria (24) and profiles of serum

CA125 levels (25), according to the recommendations by the Gyne-
cologic Cancer InterGroup (GCIG).

Isolation of Cells from Ovarian Cancer Ascites—TAM and TAT were
isolated by density gradient centrifugation followed by magnetic cell
sorting (MACS) of CD14! cells as described (8). Tumor spheroids
were separated by filtration as previously reported (8) resulting in
spheroids designated giant ("100 #m # “G”), large ("40 #m and
$100 #m # “L”), medium ("30 #m and $40 #m # “m”) or small ($30
#m # “s”; including single tumor cells). The latter were further en-
riched by MACS depletion of CD45! immune cells. All isolated cells
were immediately analyzed by flow cytometry for purity or lysed for
RNA preparation as described (8).

Flow Cytometry Analysis of Receptors and Intracellular Growth
Factors and Cytokines in TAM—FITC-labeled anti-TGF"-RIII (R&D
Systems, Minneapolis, MN; cat.# FAB242F), PE-labeled anti-LIF-R
(R&D Systems; Clone 32953; cat.# FAB249P) and PE-labeled anti-IL-
10R (Milteny, Bergisch Gladbach, Germany; clone REA239; cat.#
130–101-542) were used for surface staining. Intracellular staining of
permeabilized cells was performed as described previously (15) with
APC-labeled anti-IL-8 (eBioscience, Frankfurt am Main, Germany;
Clone 8CH; cat.# 17–8088-41/42), FITC-labeled anti-S100A8/A9 (Life
Technologies, Carlsbad, CA; Clone CF-145; cat.# MA5–17623), PE-
labeled IL-1" (eBioscience; Clone CRM56; cat.# 12–7018), PE-la-
beled IL-10 (BD Pharmingen, San Jose, CA; Clone JES3–19F1; cat.#
554706) and PE-labeled TGF"1 (BD Pharmingen; Clone TW4–9E7;
cat.# 562339). Isotype control antibodies were purchased from BD
Biosciences, Miltenyi Biotech and eBioscience. Cells were analyzed
by flow cytometry and results were calculated as percentage of
positive cells and mean fluorescence intensities (MFI). Flow cytometry
was carried out on a FACS Canto II and data were analyzed using
Diva (BD Biosciences).

Databases and Data Resources—All genome sequence, gene and
protein annotation was retrieved from Ensembl 81 (26). Functional
annotations were performed by PANTHER gene ontology (GO) en-
richment analysis (27) (http://www.geneontology.org). In case of re-
dundancies in the search results (e.g. “regulation of chemotaxis”
(GO:0050920), “positive regulation of chemotaxis” (GO:0050921),
“regulation of leukocyte chemotaxis” (GO:0002688), “cell che-
motaxis” (GO:0060326) only the term with the highest enrichment and
significance was included in the Figs. 2B, 3B, 4A, 4B, and 7A. Overall
survival (OS) data were retrieved from PRECOG (PREdiction of Clin-
ical Outcomes from Genomic Profiles; https://precog.stanford.edu)
(28), a database for querying associations between genomic profiles
and cancer outcomes.

Subcellular location information was downloaded from the Human
Protein Atlas (http://www.proteinatlas.org/download/subcellular_
location.csv.zip). Predicted intracellular proteins were identified by
protein class “Predicted intracellular protein.” Proteins predicted as
predominantly or exclusively membrane-associated (used in Fig. 1E
and supplemental Fig. S2A) were identified by the presence of the
term “membrane” and the absence of the term “intracellular” in pro-
tein class (n # 3514). A list of predicted secreted proteins (n # 2253;
used in Fig. 1E and supplemental Fig. S2A) was compiled by calcu-
lating the intersections of four data sets: “Predicted secreted pro-
teins,” “SignalP predicted secreted proteins,” “Phobius predicted
secreted proteins,” “SPOCTOPUS predicted secreted proteins”
downloaded from the Human Protein Atlas:

http://www.proteinatlas.org/search/protein_class:
Predicted%20secreted%20proteins

http://www.proteinatlas.org/search/protein_class:
SignalP%20predicted%20secreted%20proteins

http://www.proteinatlas.org/search/protein_class:
Phobius%20predicted%20secreted%20proteins
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http://www.proteinatlas.org/search/protein_class:SPOCTOPUS
%20predicted%20secreted%20proteins

A data set of all human plasma membrane receptors (supplemen-
tary Data set S5; used for Figs. 1E and 2, supplemental Fig. S2A) was
built as follows: First, we identified all genes in the HUGO database
with the term “receptor” in their description. From this set, false
positives were removed by excluding all genes with the following
terms in their description: “putative,” “accessory,” “assoc,” “bound,”
“chemosensory,” “cornichon,” “endoplasmic reticulum,” “golgi,” “in-
teract,” “intracellular,” “non-receptor,” “nuclear,” “orphan,” “peroxi-
some,” “regulat,” “retinoic,” “retinoid,” “signal recognition particle,”
“signal sequence,” “steroid,” or “substrate.” The resulting list (sup-
plementary Data set S6) was combined with a receptor list published
by Ramilowski et al. (29) manually curated using GeneCards database
information (supplementary Data set S7)and a list of CD markers
representing membrane receptors (supplementary Data set S8).

Lists of all growth factors/cytokines, their cognate receptors, en-
zymes synthesizing lipid mediators and lipid receptors were retrieved
from (30). The sets of growth factors/cytokines and their receptors
were updated using the GeneCards database (http://www.genecards.
org). This data was used to define groups of growth factor/cytokine
receptors and their interacting ligands (supplementary Data set S10A;
used for Figs. 1C, 1D, 1E, 1F, 5, 6, 7, supplemental Figs. S2B, S3, S4,
S5, S6).

RNA Sequencing (RNA-Seq) and Analysis of RNA-Seq Data—RNA
isolation and RNA-Seq was carried out on an Illumina HiSeq 1500 as
described using the Illumina TruSeq stranded total RNA kit (30).
RNA-Seq data were aligned using STAR (version 2.3.1z13_r470) and
processed as reported (30). TPM (transcripts per million) were
calculated based on the total gene read counts, and corrected for
contamination by tumor cells as described (30). Genes were con-
sidered expressed if they had a minimum TPM of 2 (except for Fig.
1F: TPM"0.3). Coexpression analyses (Figs. 6 and 7) were carried
out on genes showing a high variance of expression (expression
"median variance) as determined by the Python function pandas-
.DataFrame.var ( ).

Protein Mass Spectrometry—Isolated and pelleted tumor spher-
oids, TAM and TAT were lysed in SDS buffer (4% SDS in 0.1 M

Tris/HCl pH 7.6) before heating samples at 95 °C for 5 min. DNA was
sheared by sonication and cell debris was removed by centrifugation
at 16.000 g for 10 min. DC protein assay (BioRad, Hercules, CA) was
used to determine concentration of solubilized proteins in superna-
tants after centrifugation. Equal amounts of proteins (40 #g each)
were loaded on a gradient gel (NuPAGE 4–12% Bis-Tris gel, Invitro-
gen, Carlsbad, CA) and separated by SDS-PAGE before in-gel diges-
tion (32).

For proteomic analyses of conditioned media, tumor spheroids and
TAM freshly prepared from ascites of 5 HGSOC patients were cul-
tured in autologous cell-free ascites for 16 h at 37 °C and 5% CO2.
After that, the ascites was aspirated, and the cells were washed three
times in PBS and twice in serum-free medium. Cells were cultured in
serum-free medium for another 5 h before harvesting the culture
supernatants for proteomic analysis as described below. Tumor
spheroids were cultured in serum-free M199 (Gibco, Carlsbad, CA)
mixed 1:2 with DMEM/Ham’s F-12 (1:1; Biochrom, Berlin, Germany).
Serum-free RPMI1640 supplemented with 2 mM L-alanyl-L-glutamine
(Gibco) was used for culture of TAM. Up to 40 #g of proteins were
loaded on a gradient gel (NuPAGE 4–12% Bis-Tris gel, Invitrogen)
and separated by SDS-PAGE before in-gel digestion (32).

Following separation by SDS-PAGE, gel lanes were cut in 10
pieces and proteins were reduced (10 mM dithiothreitol), alkylated (55
mM iodoacetamide) and digested by trypsin (Promega, Mannheim,
Germany), using an enzyme to protein ratio of 1:100. After overnight
incubation, peptides were gradually eluted by increasing amount of

acetonitrile before sample desalting by stop and go extraction
(STAGE) tips (33).

For mass spectrometry (MS) analysis, peptides were eluted from
STAGE tips by solvent B (80% acetonitrile, 0.1% formic acid), dried
down in a SpeedVac Concentrator (Thermo Fisher Scientific, Wal-
tham, MA) and dissolved in solvent A (0.1% formic acid). Peptides
were separated using an UHPLC (EASY-nLC 1000, ThermoFisher
Scientific) and 20 cm, in-house packed C18 silica columns (1.9 #m
C18 beads, Dr. Maisch GmbH, Ammerbuch, Germany) coupled in line
to a QExactive HF orbitrap mass spectrometer (ThermoFisher Scien-
tific) using an electrospray ionization source. A gradient was applied
using a linearly increasing concentration of solvent B (80% acetoni-
trile, 0.1% formic acid) over solvent A (0.1% formic acid) from 10% to
38% for 55 min and from 38% to 60% for 5 min, followed by washing
with 95% of solvent B for 5 min and re-equilibration with 5% of
solvent B.

Full MS spectra were acquired in a mass range of 300 to 1750 m/z
with a resolution of 60,000 at 200 m/z. The ion injection target was set
to 3 % 106 and the maximum injection time limited to 20 ms. Ions were
fragmented by high-energy collision dissociation (HCD) using a nor-
malized collision energy of 27 and a ion injection target of 1.0 % 105

with a maximum injection time of 25 ms. The resulting tandem mass
spectra (MS/MS) were acquired with a resolution of 15,000 at 200 m/z
using data dependent mode with a loop count of 15 (top15).

Experimental Design and Statistical Rationale of Proteomic Analy-
ses—Raw MS data from 27 ex vivo samples (matching TU, TAM, and
TAT samples from 9 patients), and from conditioned media of 5 ex
vivo samples (matching TU and TAM) was analyzed using MaxQuant
1.5.5.1 (Cox & Mann, 2008) in label free quantitation mode (LFQ),
which includes the Andromeda search engine. The database used
was Ensembl 81 containing 101,933 sequences. Parameters differing
from default values were as follows: minimum of 1 unique peptide per
protein group (UniquePeptides # 1), usage of “match between runs”
(matchBetweenRuns # true) with a matching time window of 0.7 min
(matchingTimeWindow # 0.7) and an alignment time window of 20
min (alignmentTimeWidow # 20); ibaq # true, ibaqLogFit # true. The
protease used was trypsin, the only fixed modification included was
carbamidomethyl, variable modifications permitted were oxidation
and N-terminal acetylation (“acetyl”). There were 2 missed or non-
specific cleavages permitted, the mass tolerance for precursor ions
was 4.5 ppm and the mass tolerance for fragment ions was set to 20
ppm. Protein groups identified by MaxQuant were matched to their
respective genes. Groups matching multiple genes were duplicated
to match protein and RNA data of genes that are annotated multiple
times in Ensembl (such as LILRA4). This led to the amplification of a
small number of gene families (histones, PRAME family members,
Peptidylprolyl Isomerase A Like family members, and keratin associ-
ated proteins), which were therefore not considered in gene enrich-
ment analyses. Missing LFQ intensity values (“0& in MaxQuant output)
were replaced by a minimum non-zero value with a randomized
Gaussian relative error of 0.59 added (0.59 was the overall relative
standard deviation across all protein groups).

False discovery rate estimation was performed according to the
MaxQuant implementation of the concatenated reverse database
approach proposed by Peng et al. (34, 35). FDR requirements were
1% on both the peptide and protein group identification levels.

Purity of protein samples assessed by cell type-specific markers
(supplemental Fig. S1A) revealed a high contamination of one TAT
and one TAM sample with TU proteins (not shown), i.e. tumor marker
expression at tumor cell levels. These samples (TAT92 and TAM108)
were excluded from the present study. Three TAT samples with lower
tumor cell contamination (TAT08, TAT114, TAT133; triangles in sup-
plemental Fig. S1A; supplemental Table S1) were excluded only from
the analysis of TU-specific expression in Fig. 3 and supplemental Fig.
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S1C. Each of these three TAT samples had a higher sum of LFQ
intensities of tumor markers (sum of LFQ intensities of EPCAM, PAX8,
MSLN, MUC16, and ITGB4) than the TU sample with the lowest sum
of LFQ intensities of tumor markers.

Principal component analysis (supplemental Fig. S1B) was per-
formed using the Python module sklearn on rescaled LFQ data (using
the MinMaxScaler). For the Venn diagram in Fig. 1A, proteins were
considered expressed if their median LFQ intensity reached the 0.25
quantile of the combined proteome (# 50 million). supplemental Fig.
S1C is based on all samples shown in supplemental Fig. S1A; for
identifying TU-specific proteins in the TAT versus TU comparison,
samples labeled “contaminated” were excluded. In supplemental Fig.
S1C, statistically significant fold changes were tested using an un-
paired permutation approach (i.e. not assuming a specific distribu-
tion) using the Python permute framework for 100,000 iterations, and
genes were marked red if they had significant (FDR $0.05) and at
least 2-fold difference.

For Fig. 1C, proteins were considered “in proteome” if there was a
protein group (identified in any sample by MaxQuant) associated to
them. p values were calculated by drawing random subsets of “all”
with the same size as the query set (without replacement). A “random
subset curve” was considered equal or better than the query curve if
it had more missing proteins at any TPM threshold at which the query
curve had at least 20 genes remaining. The p value was defined as the
number of random curves drawn that were equal or better than
the query curve divided by the number of random curves drawn. The
simulations are visualized in supplemental Fig. S4.

To minimize false positives in the analyses in Figs. 2A and 3A
arising from potential cross-contaminations among cell types, pro-
teins were considered expressed in a given cell type if their median
LFQ intensity value was "50 million and maximally 5-fold higher in
any of the other two cell types.

As surrogate markers for survival (supplemental Fig. S8), we used
all genes with a PRECOG z-score of "4.0 or $-4.0 (28). Coexpression
analysis was carried out for proteins encoded by these surrogate
marker genes achieving a minimum Spearman correlation with RNA
expression of $"0.3. The expression of these surrogate marker pro-
teins across all 9 TU samples was correlated with the entire proteome
after standardization of LFQ intensities for each marker to range of
0–1.0. Surrogate markers yielding Spearman correlation coefficients
$"0.95 were grouped. Only groups with at least 8 proteins were
considered further (supplemental Fig. S8A).

Other Statistical Analyses—Spearman correlation coefficients ($)
and p values were determined by scipy.stat.spearmanr (Python). Sig-
nificance levels are as ****, ***, ** and * for p $ 0.0001, p $ 0.01, p $
0.01 and p $ 0.05, respectively.

RESULTS

Proteotranscriptomic Analysis of the HGSOC Microenviron-
ment—In a first step toward understanding the signaling net-
works in the HGSOC microenvironment, we determined the
proteome of tumor cell spheroids (TU, n # 9), TAM (n # 8) and
TAT (n # 8) isolated from the ascites of HGSOC patients
(supplementary Note, supplemental Fig. S1, supplementary
Data sets S1 and S2). In total, we identified 7186 proteins
expressed by TU, TAM, and TAT, of which 6442 proteins
showed a median label-free quantification (LFQ) intensity "50
million (corresponding to the 0.25 quantile of the combined
proteome). 4606 of these were found expressed in each cell
type, whereas 359, 229, and 199 proteins were selective for
TU, TAM, or TAT samples, respectively (Fig. 1A). In our effort

to obtain a comprehensive picture of the functionally relevant
signaling networks in the HGSOC microenvironment, we next
determined the transcriptome of TAT (n # 6) and increased
the sample sizes of a previous study of TU and TAM (30) to
n # 23 and n # 29, respectively. This yielded a total of 19
samples (TU # 8, TAM # 8, TAT # 3), for which both tran-
scriptomic as well as proteomic data were available (supple-
mental Table S1). Consistent with the generally higher de-
tection limit of proteomic compared with transcriptomic
technologies (e.g. ref (36).), we identified a lower number of
proteins by mass spectrometry (n # 7,186) than mRNAs by
RNA-Seq (n # 14,128, transcripts per million (TPM)"2; sup-
plementary Data set 3). This suggests that the construction of
molecular signaling networks based on proteomic data may
lack essential components, and that these lacking compo-
nents could be complemented by transcriptomic data. To
address this possibility, we first analyzed the correlation be-
tween mRNA and protein abundance of TU, TAM and TAT.
The cumulative distribution of Spearman correlation coeffi-
cients between mRNA (TPM) and protein (LFQ intensity) ex-
pression values was calculated for all samples and cell types,
showing positive correlations for 89.8% of all instances, neg-
ative correlations for 10.2% and a median Spearman&s $ value
of 0.51 (Fig. 1B; genes with a particularly high correlation are
listed in supplementary Data set S4), clearly indicating a good
correlation of mRNA and protein abundance.

Next, we examined the overlap between transcriptome and
proteome for sets of proteins with different subcellular local-
izations. Toward this goal, we first compiled data sets for all
predicted membrane receptors (supplementary Data set S5;
based on supplementary Data set S6-S8 as described under
Experimental Procedures), as well as for all predicted se-
creted proteins (supplementary Data set S9). Because a major
focus of our study was the investigation of intercellular sig-
naling pathways in the HGSOC microenvironment, we addi-
tionally generated a database of 136 groups of growth factor
and cytokine receptors (n # 257) and their ligands (n # 466),
as well as a set of ligands for which receptors are not known
(orphan ligands; n # 47), using published data and publicly
accessible databases (supplementary Data set S10A; see
Experimental Procedures for details). The term “growth fac-
tors and cytokines,” as used in this manuscript, also includes
polypeptides with growth factor-like signaling functions, such
as hormones, neuroregulators and axon guidance molecules.
To study the correlation between transcriptome and proteome
for genes encoding growth factor/cytokine receptors and their
ligands in a cell type-specific manner, we plotted LFQ inten-
sity values against TPM for each of the protein/mRNA pairs.
Indeed, we observed a positive correlation of mRNA and
protein expression levels in most cases (Figs. 1C and 1D). For
example, the rank order for EGFR or ERBB2 expression is
TU " TAT " TAM (Fig. 1C), or for IL16 TAT " TAM " TU
(Fig. 1D) for both mRNA and protein. These data corroborate

Proteotranscriptomics of Ovarian Cancer

Molecular & Cellular Proteomics 17.2 273



the good correlation between mRNA and protein abundance
for the different cell types of the HGSOC microenvironment.

As expected, the proportion of detected proteins increased
with increasing mRNA levels (Fig. 1E, analysis across all three
cell types, TU, TAM, and TAT). However, protein detection
probabilities were clearly reduced for genes encoding mem-
brane or secreted proteins (Fig. 1E). This discrepancy de-
creased at higher mRNA expression levels (Fig. 1E). Com-
pared with membrane or secreted proteins, protein detection
probabilities for growth factor/cytokine receptors or their li-
gands were even further reduced (Fig. 1E; p % 0.022 and p %

0.0006, respectively; significance tests in supplemental Fig.
S4). For example, for genes with an mRNA expression value
of TPM # 1, overall ' 50% of the corresponding proteins
could be detected; however, if those genes encoded growth
factors or cytokines, only 25% of the corresponding proteins
were found in the proteome.

We next performed proteomic analyses of conditioned me-
dia of TU and TAM after a 5-hour culture in protein-free

medium. In these culture supernatants, we identified 1528
secreted proteins (detected in at least 50% of the samples;
supplementary Data set S11; secreted proteins as defined in
supplementary Data set S9). As shown in Fig. 1F, 86.4% (n #
38) of the 44 growth factors/cytokines in the proteomes of TU
and TAM could also be detected in the conditioned media of
TU and TAM. Furthermore, out of 224 growth factors/cyto-
kines detected in the transcriptomes, but not in the pro-
teomes of TU and TAM, 131 (58.5%) were found in the con-
ditioned media of TU and TAM. The conditioned media also
contained 62 growth factors/cytokines not present in the tran-
scriptomes, which we attribute to a highly efficient translation
and secretion of weakly expressed genes (below the applied
cut-off of TPM"0.3) as well as to the up-regulation of a subset
of genes under the culture conditions.

Our results suggest that there are at least three reasons
contributing to the underrepresentation of growth factors/
cytokines and their receptors in the proteomes. These are (1)
relatively low expression levels of secreted and membrane

FIG. 1. Analysis of the proteome and transcriptome of TU, TAM and TAT. A, Venn diagram showing the number of proteins expressed
or coexpressed by TU, TAM and TAT with a median LFQ intensity greater that the 0.25 quantile of the combined proteome (LFQ intensity"50 %
106). B, Data of all patients and all cell types were analyzed to calculate the cumulative distribution of Spearman correlation coefficients ($)
between mRNA (TPM) and protein (LFQ intensity) expression values, resulting in a median value of $ # 0.51. The blue area indicates positive
correlations (89.8% of all instances), yellow indicates negative correlations (10.2%). C, D, Correlation of protein and mRNA expression in TU
(red), TAM (blue), and TAT (green) for all growth factors/cytokine receptors (C) or growth factors/cytokines (D) present in the proteome and
transcriptome of at least one cell type. LFQ intensity values were plotted against TPM. Connecting lines with a positive slope indicate positive
correlation of mRNA and protein expression, connecting lines with a negative slope indicate negative correlation. See supplemental Figs. S5
and S6 for further analyses. E, Percentage of genes for which protein expression was detected (n # 7186) plotted against mRNA expression
levels (TPM) of the genes, using data from all patients and all cell types. p values: receptors or growth factors/cytokines versus random sets
of proteins (see simulations in Supplemental Fig. S4 for details). F, Venn diagram showing the number of growth factors and cytokines detected
in the transcriptomes (TPM"0.3), the proteomes (LFQ intensity"50 % 106), or conditioned media (found in &50% of the samples) of TU and
TAM.
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proteins, and in particular low intracellular expression levels of
secreted proteins (2) a generally lower detectability of se-
creted and membrane proteins (e.g. because of a lower fre-
quency of arginines and lysines in transmembrane domains,
and/or because of a higher hydrophobicity of transmembrane
domain peptides that interferes with LC separation), as pre-
viously reported (37–40) and (3) heterogeneity among cells
with only a small percentage of cells expressing a particular
secreted or membrane protein at a detectable level. Taken
together, our results indicate that transcriptomic data are
suitable to complement proteomic data, for secreted growth
factors and cytokines.

The Receptomes and Secretomes of the HGSOC Microen-
vironment Point to Cell Type-selective Functions in Integrin-
mediated Adhesion and Immune Regulation—To elucidate the
intercellular communication networks in the HGSOC microen-
vironment, we next analyzed the proteome-derived recep-
tomes and secretomes, i.e. all predicted membrane receptors
and secreted proteins (as defined in supplementary Data set
S5 an S9). We identified 149 membrane receptor proteins
expressed by at least one cell type (supplementary Data set
S15; LFQ intensity "50 million). Of these, 20 were selective
for TU, 40 for TAM and 3 for TAT; 49 membrane receptor
proteins were found in all three cell types (Fig. 2A). GO en-

FIG. 2. The receptome of TU, TAM and TAT. A, Venn diagram showing the number of membrane receptors present in the proteomes of
TU, TAM and/or TAT (LFQ intensity" 50 million). B, PANTHER functional annotation (GO enrichment analysis) of membrane receptors
expressed in TU, TAM or TAT. The figure shows the top non-redundant terms by enrichment ("10-fold) and p value ($10( 7). Different functional
classes are represented in different colors. (c, d) Heatmaps showing the expression of membrane receptors listed in the GO term set “cell adhesion”
(c) or “immune response” (d) in TU, TAM and TAT. For each receptor, the median LFQ intensity value of the cell type with the highest expression
was set to 1; the median LFQ intensity values of the other cell types were normalized accordingly. CR: complement receptors; TLR: toll-like
receptors; FCGR: receptor for the Fc region of immunoglobulins gamma; dots: receptors with known functions in cancer biology.
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richment analysis of membrane receptors expressed in TU,
TAM or TAT revealed pathways involved in remodeling of the
extracellular matrix (ECM) and cell adhesion as well as path-
ways regulating the immune response (Fig. 2B).

The most prominent proteins of the “cell adhesion” group
were integrins (ITG; Fig. 2C) and receptors with pivotal sig-
naling functions in cancer biology, including ephrin receptors
(EPH), EGFR, NOTCH3, the adhesion molecule L1CAM, re-
ceptor-type tyrosine-protein phosphatases (PTPR) as well as
semaphorin receptors of the neuropilin (NRP) and plexin
(PLXN) families (marked by dots in Fig. 2C). Numerous of
these receptor proteins are expressed in a cell type-selective
manner by TU and TAM, pointing to a cooperation of these
cell types in adhesion and invasion. The major constituents of
the “immune response” group were complement receptors
(CR), immunoglobulin receptors (FCGR) and toll-like receptors
(TLR), mostly expressed at highest levels by TAM (Fig. 2D).

To identify ligands, which could activate these receptors in
the HGSOC environment, we performed a similar analysis of
the secretome, i.e. for all predicted secreted proteins, and
identified 411 proteins in the proteomes of TU, TAM and TAT
(Fig. 3A; LFQ intensity "50 million; supplementary Data set
S16). Functional annotation revealed GO terms linked to
platelet degranulation, ECM organization and immune regu-
lation, the latter including “regulation of complement activa-
tion” as top hits (Fig. 3B). The most conspicuous proteins of
the “ECM organization” group were ECM constituents, includ-
ing fibrinogens (FG), fibronectin (FN), laminins (LMN), versican
(VCAN) and vitronectin (VTN), proteases of the cathepsin
(CTS), kallikrein (KLK) and matrix metalloprotease (MMP) fam-
ilies as well as proteinase inhibitors of the SERPIN and TIMP
subgroups (Fig. 3C), whereas the “immune regulation” group
contained almost all components of the complement system
(Fig. 3D).

Because many growth factors and cytokines expressed at
the transcriptional level were not detectable in the proteomes
(Fig. 1D), we analyzed proteomic data of conditioned media
from TU and TAM (see above). Table I lists the most abundant
growth factors and cytokines in these culture supernatants.
These include many ligands regulating major signaling path-
ways, such as IGF, JAG (NOTCH ligands), S100, SEMA, SLIT,
THBS (thrombospondin), VEGF, and WNT.

Signaling Networks in the HGSOC Microenvironment Based
on Cell Type-specific Transcriptomes—As our correlation
analysis between transcriptome and proteome had shown
that expression of membrane receptor and secreted proteins
is prone to evade detection by proteomics (see above), we
aimed at complementing our proteome-based analysis of sig-
naling networks in the HGSOC microenvironment by our tran-
scriptomic data. We therefore studied the mRNA expression
of genes encoding membrane receptors or secreted proteins
(as defined in (supplementary Data set S5 and S9), respec-
tively). Functional annotation of those genes expressed in TU,
TAM, or TAT showed most significant enrichments for path-

ways involved in G protein-coupled receptor (GPCR) signal-
ing, axon guidance signaling, organization of the extracellular
matrix and cell adhesion, immune regulation and complement
activation (Figs. 4A and 4B).

Next, we examined the cell type-specific mRNA expression
of genes for growth factor/cytokine receptors and their li-
gands (supplementary Data set S10A, S12, S13). This allowed
for the construction of interaction maps showing the
sources of ligands and their potentially targeted cell types
(Fig. 5A). These data also point to a number of cell type-
selective signaling components, as defined by the selective
expression of a ligand or receptor by one particular cell type
(Table II).

Furthermore, a number of ligand mRNAs and several re-
ceptor mRNAs are strongly expressed by all three cell types
(Table II). Moreover, numerous receptors were found to be
expressed at a high level in at least one cell type, whereas
neither cell type expressed the cognate ligands (Fig. 5B).
These include adiponectin receptors (ADIPOR), CSF2R,
CSF3R, IL2R, IL17R and the insulin receptor (INSR) (Fig. 5B:
group IDs 4, 30, 31, 65, 78, 88). This suggests that ligands
produced by other cell types of the HGSOC microenviron-
ment or systemic factors might activate these receptors. Con-
versely, we also detected expression of ligands without ex-
pression of their cognate receptors, e.g. KITLG (Fig. 5B: group
ID 89). Moreover, multiple orphan ligands were highly ex-
pressed in TU, TAM, and TAT, including ligands with known
protumorigenic effects, like SPARC, SPP1, and STC1/2 (sup-
plemental Fig. S7).

We further extended our analysis to the potential contribu-
tion of lipid mediators to the TU - TAM - TAT signaling network
(supplementary Data set S10B). Toward this end, we deter-
mined the mRNA expression levels of enzymes involved in
(phospho)lipid breakdown or in the generation of fatty acids
with signaling functions, as well as of their respective recep-
tors (Fig. 5C; (supplementary Data set S17)). We found an
overall similar contribution by all three cell types, but also
identified cell type-selective pathways:

- All cell types seem to partake in the generation of all
analyzed types of lipid mediators (based on the expression of
the corresponding enzymes), with a slightly more prominent
role for TAM in the synthesis of lysophosphatidic acid (LPA)
and leukotrienes.

- Although TU express the LPA receptors LPAR1–3, LPAR6
is the main LPA receptor on both types of immune cells.

- Leukotriene receptors (4 subtypes) are mainly expressed
by TAM and TAT.

- Likewise, prostaglandin receptors are mainly expressed
by both types of immune cells with a very prominent role for
the PGE2 receptors PTGER2 and 4.

Emerging evidence from clinical trials suggests a thera-
peutic benefit for immune checkpoint inhibitors in the treat-
ment of ovarian cancer (41). We therefore investigated
whether cells of the HGSOC microenvironment expressed
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molecular targets of clinically relevant immune checkpoint
inhibitors. Indeed, we found high mRNA expression levels of
several checkpoint regulators particularly on immune cells,
including PD-L1 on TAM and TAT, and CTLA4 on TAT
(Fig. 5D).

TAM from Patients with Predicted Opposite Clinical Out-
comes Express Distinct Sets of Growth Factors and Cyto-
kines—We have previously shown that TAM in ovarian cancer
ascites can be stratified into subsets based on the expression
of the surface markers CD163 and CD206 (encoded by the

FIG. 3. The secretome of TU, TAM and TAT. A, Venn diagram showing the number of predicted secreted proteins in the proteomes
of TU, TAM and/or TAT. B, PANTHER functional annotation of all secreted proteins identified in the proteomes of TU, TAM or TAT. The
figure shows the top non-redundant terms by enrichment ("10-fold) and p value ($10( 7). C, D, Heatmaps showing the expression of
secreted proteins listed in the GO term set “ECM organization” (C) or “immune response” (D). For each secreted protein, the median LFQ
intensity value of the cell type with the highest expression was set to 1; the median LFQ intensity values of the other cell types were
normalized accordingly. CTS: cathepsins; fib: fibrinogens; prt: proteases and protease inhibitors. Dots: ECM proteins; arrows: growth
factors/cytokines.
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MRC1 gene), both of which show a high degree of variance
among patients (1–94% CD163! or CD206! of the CD14!

TAM population) (8). Although a high abundance of these
biomarkers is associated with a poor clinical outcome, a low
expression is linked to longer relapse-free survival (RFS) (13–

15). We have termed TAM of the former subgroup bTAM (“bad
prognosis TAM”), and the low expression phenotype gTAM
(“good prognosis TAM”). Consistent with these previous find-
ings, we found strong correlations of CD163 and MRC1
mRNA levels with the fraction of CD163!/CD206! cells in

TABLE I
Proteins secreted by TU or TAM cultured for 5 h in protein-free me-dium. The table lists the most abundant proteins (LFQ intensity " median
LFQ intensity of all proteins, and present in at least 50% of the samples). Note that TU and TAM values are not directly comparable because

of the lack of normalizers

Name TU median (LFQ/107) TAM median (LFQ/107) Name TU median (LFQ/107) TAM median (LFQ/107)

ANGPT1 18.7 22.4 NRG2 21.6 127.9
BMP1 118.3 159.0 NTF4 11.9 9.2
BMP3 14.2 26.2 OGN 43.1 26.4
CCL18 8.4 86.6 PROS1 126.8 357.3
CMTM1 35.2 64.9 S100A2 16.1 12.4
CTGF 23.4 13.3 S100A4 59.9 32.7
CX3CL1 16.6 17.7 S100A6 245.5 97.9
CXCL5 12.1 88.1 S100A8 14.2 1353.4
CXCL8 12.0 23.6 S100A9 10.8 285.9
CXCL16 0.0 28.6 S100A10 25.5 15.1
DLL1 28.9 25.9 S100A11 80.4 149.4
DLL4 13.2 14.5 S100A13 39.4 0.0
EFEMP1 65.9 90.4 S100A16 41.2 4.8
EFNA1 13.5 6.0 SEMA3C 8.5 22.4
EGF 28.1 22.9 SEMA3D 13.0 13.7
FAM3C 46.8 30.5 SEMA3E 25.4 21.3
FAM65C 27.4 18.1 SEMA3G 15.1 25.1
FGF2 4.2 14.3 SEMA4B 18.8 34.5
FGF7 30.9 23.7 SEMA4C 14.4 16.6
FGF12 11.2 14.8 SEMA4D 22.1 24.6
FST 16.2 10.3 SEMA4F 32.6 49.1
FSTL1 17.5 15.2 SEMA5A 17.0 17.7
GAS6 8.4 17.5 SEMA5B 7.7 14.6
GDF1 53.2 85.2 SEMA6A 11.7 10.1
GDF9 11.2 18.1 SEMA6B 8.1 13.9
GDF15 11.6 15.4 SEMA6C 28.1 35.7
GMFB 31.3 34.3 SEMA7A 396.1 341.5
GMFG 0.0 15.6 SLIT1 354.9 611.6
GRN 10.8 18.7 SLIT2 20.6 20.7
HDGF 101.4 47.0 SLIT3 28.4 43.2
HGF 22.0 46.0 SPARC 21.7 59.2
IGF1 63.8 56.4 STC2 15.6 2.5
IGF2 19.7 11.9 TGFB2 18.3 15.4
IGFALS 27.4 35.3 TGFB3 11.0 14.1
IGFBP2 143.7 35.2 THBS1 18.4 784.6
IGFBP3 179.4 59.4 THBS2 20.1 34.0
IGFBP4 7.3 16.7 THBS3 20.0 14.5
IGFBP5 12.5 32.4 THBS4 46.8 116.2
IGFBP6 25.5 24.6 TNFRSF11B 36.5 18.7
IGFBP7 27.1 27.6 TNFSF10 6.4 20.9
IL1RN 20.4 63.4 TRH 55.1 63.0
IL16 24.2 26.8 VEGFA 16.0 8.2
IL17D 11.8 35.5 VEGFC 21.6 40.1
IL18 11.3 11.2 WNT2B 10.4 20.0
INHBA 6.6 15.0 WNT5A 31.1 35.3
JAG1 23.6 31.8 WNT6 24.5 27.4
JAG2 46.5 97.0 WNT7A 13.1 12.3
MDK 15.7 5.2 WNT7B 15.3 31.2
MIF 62.4 30.9 WNT10A 14.6 19.1
NRG1 12.7 28.9 WNT11 16.0 12.4
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CD14! TAM populations in our sample set (Fig. 6A). CD163
and MRC1 mRNA expression also correlated with the ascites
levels of IL-10 (Fig. 6A), which is prognostic of a short RFS of
ovarian cancer (30).

Based on this knowledge we next sought to investigate
whether these different TAM subsets express distinct sets of
growth factors and cytokines that might be relevant to the
pathobiology of ovarian cancer. We applied Spearman corre-
lation analysis to the genes coding for growth factors and
cytokines (supplementary Data set S10A) in the transcrip-
tomes of TAM to identify genes coexpressed with CD163 and
MRC1. Although 13 genes showed a significant positive cor-
relation (supplementary Data set S18); top 7 in Fig. 6B), 28
were inversely correlated (supplementary Data set S6; top 7 in
Fig. 6C). Gene ontology enrichment analysis identified the
term “monocyte chemotaxis“ (GO:0002548) as the top hit for
bTAM (fold enrichment "100; p $ 0.0001), whereas “regula-
tion of T-cell chemotaxis“ (GO:0010819) showed the highest
score for gTAM (fold enrichment "100; p # 0.01). These
correlations are in agreement with the clinically favorable in-
tratumoral presence of T cells and the known unfavorable

accumulation of monocytic cells in ovarian cancer (17, 42).
This is also consistent with the higher expression of protu-
morigenic growth factors and cytokines by bTAM, e.g.
CCL18, KITLG, SEMA6B, S100B and VEGFB (Fig. 6B). In
contrast, tumor suppressive mediators made up most in-
versely correlated genes, e.g. CXCL10, CXCL11, IL15,
TNFSF10/TRAIL, and TNFSF14/LIGHT (Fig. 6C). Examples of
scatter plots for both directly (KITLG) and inversely (IL15)
correlating genes are shown in Figs. 6D and 6E.

We also performed an analogous analysis for genes encod-
ing secreted proteins other than growth factors and cytokines,
and identified a set of 30 genes, whose mRNA expression was
up-regulated in bTAM ((supplementary Data set S18); of these
n # 20 with $"0.5; Fig. 6F). Predominant members of this
group were proteins involved in ECM remodeling (ADAMTS2,
CTSB, FBLN5 (fibulin 5), and complement factors C1QC and
CR1L).

Identification of Signaling Pathways in TU Associated with
Clinical Outcome—A similar approach was used to ask
whether the expression of genes encoding secreted proteins
by TU differs among patients with opposite clinical outcomes

FIG. 4. Transcriptomics reveal signaling networks in the HGSOC microenvironment. A, PANTHER functional annotation (GO enrichment
analysis) of genes for predicted membrane receptor proteins and expressed in TU, TAM or TAT (n # 625). The figure shows the top terms by
enrichment ("10-fold) and p value ($10( 5). GPCR: G-protein-coupled receptor; IFNG; interferon-!; PLC: phospholipase C. B, Functional
annotation of genes for predicted secreted proteins and expressed in either cell type (n # 1168). The figure shows the top terms by enrichment
("3-fold) and p value ($10( 4). Different functional classes are represented in different colors in both panels.
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(as predicted from the phenotype of their TAM). Toward this
goal, we analyzed the transcriptomes of matched pairs of TU -
TAM samples from 10 patients (Supplemental Table S1).
Spearman correlation analyses identified 41 genes coding for
secreted proteins ($"0.7; Supplementary Data set 19), the
expression of which correlated with the presence of bTAM.
GO enrichment analysis revealed ECM organization, vascu-
logenesis and cell migration/motility as functions associ-
ated with these genes (Fig. 7A). Of these genes, 6 coded for

growth factors/cytokines (Figs. 7B and 7C) and 35 for other
secreted proteins (Fig. 7D). Intriguingly, 3 out of the 6 pro-
teins of the former group represent axon guidance mole-
cules (SEMA3C, SEMA7A, and SLIT2). In addition, we found
6 inversely correlated genes coding for secreted proteins
($$-0.7; Figs. 7E and 7F), none of which belonged to the
growth factor/cytokine group. Of these 6 genes, 3 coded for
proteases or protease inhibitors related to kallikrein (KLK7,
KLK10, SPINK5).

FIG. 5. Cellular origins and targets of signaling in the HGSOC microenvironment. A, Schematic representation of growth factor- and
cytokine-driven signaling pathways operating among TU (red), TAM (blue) and TAT (green). Receptors (left) and their respective ligands (right)
are arranged in adjacent blocks. Numbers indicate the group ID as defined in Supplemental Data set S10A. The sizes of the filled squares in
A-C indicate the level of expression determined by RNA-Seq (high: median TPM "50; intermediate: median TPM "10; low: median TPM "2).
Open squares indicate cases, where substantial expression (TPM "3) was observed only in a small fraction of samples ($10%). Only pathways
for which expression of both ligands as well as their cognate receptors was detected are shown. B, Pathways for which either only ligand or
only receptor expression (but not both) could be detected. C, Schematic representation of lipid-mediated signaling pathways. Left: receptors;
right: enzymes involved in lipid metabolism and the generation of signaling mediators, LPA and eicosanoids. D, mRNA expression of immune
checkpoint regulators in TU, TAM and TAT.
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In our effort to unravel prognostic factors expressed by TU,
we also made use of the PRECOG database, which contains
the results of a meta-analysis of 1763 patients from 12 studies
associating gene expression in ovarian tumor tissue with
overall survival (OS) (28). Genes with a z-score of "4.0 or
$-4.0 were used as surrogate markers for a correlation-based
coexpression analysis, which resulted in the definition of 16
groups (supplemental Fig. S8A; (supplementary Data set

S20)). Two groups clearly stood out: the PALLD group
strongly associated with a short OS (Supplemental Fig. S8B),
and the HLA-DQB1 group linked to a favorable clinical out-
come (Supplemental Fig. S8C).

DISCUSSION

A recently published proteogenomic study of HGSOC solid
tumor tissue (36) found 9170 proteins associated with gene

TABLE II
Cellular sources and targets of growth factors and cytokines

Cell type Main target of Group IDs (Fig. 5A)

TU EGF via EGFR, ERBB2–4 42
FGF via FGFR1–4 48
HGF via MET 59
RSPO via LGR4–6 117
WNT via LRP 134

TAM ANGPTL2 via LILRB2 8
CSF1 via CSF1R 29
S100 via CD36, MSR1, TLR4 118
chemokines via CCR1, CCR2 15, 16

TAT CD70 (TNFSF7) via CD27 (TNFRSF7) 26
IL18 via IL18R1 79
chemokines via CCR4/6, CXCR3/5/6 18, 20, 37, 39, 40

All IFNE via IFNAR1/2 61
IFNG via IFNGR1 62
IGF via IGF2R 63
IL6 via IL6R 69
MIF via CD74 97
DLL, JAG via NOTCH 102
RETN via CAP1 115
SEMA via NRP, PLXN 120
TGFB via TGFBR 125
TNFSF via TNFRSF 127
WNT via LRP 134

Cell type Main producer of Group IDs (Fig. 5A)

TU CSF1 29
EDN1/2 43
ephrins (EFNA/B) 44, 45
FGF 48
MDK 96
S100s 118
WNTs 134

TAM HGF 59
IL1B 64
IL6 69
IL10 72
S100A8 118
SEMA 120
chemokines (CCL, CXCL), IL16, oncostatin M (OSM), TGFB1 15–20, 35–41, 77, 106, 125

TAT CD40LG 25
FASLG 47
FLT3LG 49
IFNG 62
lymphotoxin B (LTB) 93
chemokines XCL1/2 135
chemokines (CCL, CXCL), IL16, oncostatin M (OSM), TGFB1 15–20, 35–41, 77, 106, 125

all MIF 97
S100A4/6/10/11 118
VEGFA 133
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names (HGNC symbols), of which 6589 overlap with the
combined proteomes of TU, TAM, and TAT in the peritoneal
HGSOC microenvironment as reported here (supplemental
Fig. S9). Conversely, 597 of the 7186 proteins in the HGSOC
microenvironment proteome were not present in the tumor
tissue proteome (supplemental Fig. S9). These differences
between solid tumor tissue and peritoneal tumor microenvi-
ronment proteomes are presumably partially because of dif-
ferences in the cellular composition (e.g. additional host cell
types in solid tumor tissue), but also suggest that these two
compartments differ significantly with respect to the func-
tional properties of cells (e.g. detached versus attached tumor
cells) as well as to the signaling networks operating among
the different cell types. Therefore, these differences may be of
high relevance for HGSOC biology and clinical treatment of
the disease.

Our proteotranscriptomic analysis of different cell popula-
tions in the HGSOC microenvironment allows for the con-
struction of intercellular communication maps. Although our
study confirms published data on signaling pathways in

HGSOC (5), it also uncovers signaling networks, which had
not been recognized to operate in HGSOC and to be associ-
ated with clinical outcome so far.

A conspicuous outcome of our proteotranscriptomic anal-
yses is the prominent expression of proteins involved in ad-
hesion and ECM remodeling (schematic summary in Fig. 8
and supplemental Fig. S10A). These findings are in line with
multiple reports showing that ovarian cancer cell metastasis
depends on adhesion to mesothelial cells, invasion through
the mesothelial cell layer, as well as remodeling of the sub-
mesothelial matrix (5, 43, 44), and that expression of ECM
remodeling genes is associated with an unfavorable clinical
outcome (45–50). The present study identifies members of the
PALLD group, which play a role in cell adhesion, motility and
ECM interactions (51, 52) to be expressed in TU and to be
coexpressed with surrogate markers of a short RFS. Further-
more, our data show that TU and TAM play a major role in the
synthesis both of ECM proteins such as collagens, laminins,
fibronectin (FN), and versican (VCAN), as well as of ECM-

FIG. 6. Coexpression of genes coding for secreted proteins in TAM with surrogate markers of clinical outcome. Both CD163 and
MRC1 (CD206) are strongly associated with a poor clinical outcome (see main text). A, Heatmap illustrating the correlations (Spearman $)
between CD163 and MRC1 (CD206) mRNA expression (RNA-Seq data), the frequency of CD163! and CD206! cells in fraction of CD14! cells
used for RNA-Seq (flow cytometry data) and cytokine levels (IL-10, M-CSF, IFN") in the corresponding ascites samples (ELISA). B, C,
Spearman correlation analysis of CD163 and MRC1 mRNA levels (combined) in TAM with the expression of growth factor and cytokine genes.
Panel (b) shows the positively correlated genes ($"0.5), panel (C) the inversely correlated genes ($$-0.6). Dashed lines indicate $ values of 0.5
and ( 0.6 respectively. D, E, Scatter plots showing examples of correlations identified in panels (B) (KITLG) and (C) (IL15). The diagonals
represent linear regression lines. A complete list of all correlating genes is shown in supplementary Data set S18. F, Analogous analysis as in
(b), but for genes encoding secreted proteins other than growth factors or cytokines (top 15 genes). ****p $ 0.0001; ***p $ 0.001; **p $ 0.01;
*p $ 0.05.
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degrading proteineases and their inhibitors including matrix
metalloproteinases (MMPs), SERPIN and TIMP proteinase in-
hibitors. Our findings also suggest that TU and TAM impinge
on ECM-associated processes in a cell type-selective fashion.
Although laminins, for example, are predominantly produced
by TU, most collagens are secreted mainly by TAM, which are
also the major source of most proteinase inhibitors. Intrigu-
ingly, these findings suggest that TU and TAM cooperate in
restructuring the ECM, cancer cell adhesion and invasion.
This concept is in line with previous reports demonstrating a
critical role for macrophages in ECM remodeling and cancer
cell invasion of ovarian carcinoma (8, 15, 42) and other tumor
types (53–56) reviewed by (11).

Our study also identified several functionally different
classes of immunosuppressive mediators operating in the
HGSOC microenvironment. These mediators are frequently
produced by distinct cell types and act on specific types of
immune cells, as schematically summarized in Fig. 8 and
supplemental Fig. S10B. Besides TAM, TAT are a major
source of many immunosuppressive factors, which we believe
results from Treg within the TAT population, a conclusion that
needs substantiation in future studies. The major players
within the immune regulatory network in HGSOC ascites as
revealed in this study are:

- Cytokines—Cytokines play a major role in immunosup-
pression in the HGSOC microenvironment (57). Examples are
TGF" and VEGF secreted by all cell types; LIF mainly by TAT;
and IL-10 selectively by TAM. These cytokines are well-known
to skew the differentiation, polarization and/or function of
both innate and adaptive immune cells toward an anti-inflam-
matory or regulatory phenotype lacking antitumor activity (57).

- Chemokines—CCL28 is synthesized mainly by TAT;
CCL5, CXCL8, IL1RN by TAT and TAM; and CCL18, CXCL2,
CXCL3 selectively by TAM. The function of most of these
molecules is attraction of monocytes/macrophages and rest-
ing cells rather than effector T cells, resulting in tumor pro-
motion by TAM and the lack of a cytotoxic antitumor response
(58).

- Lipid Mediators—PGE2, a known T cell-suppressive eico-
sanoid (59), is produced by all analyzed cell types via PTGS
(COX) and PTGES synthases. LPA, however, is produced
mainly by TAM, which are also the major sources or phos-
pholipases and autotaxin. Besides its role in cancer cell inva-
sion (60), LPA has less well understood roles in macrophage
differentiation (61) and T-cell function (62, 63).

- Checkpoint Regulators—Immune checkpoints play a de-
cisive role in the blockade of cancer cell-directed T-cell re-

FIG. 7. Coexpression of genes coding for secreted proteins in TU with surrogate markers of clinical outcome. A, The mRNA
expression levels of genes encoding secreted proteins in TU were correlated to CD163 and MRC1 mRNA expression levels in TAM. Those
genes showing a positive correlation (Spearman $"0.7) were functionally annotated (PANTHER). The figure shows the top non-redundant
terms by enrichment ("8-fold) and p value ($0.001). B, Spearman correlation analysis of CD163 and MRC1 mRNA levels (combined) in TAM
with the expression of growth factor and cytokine genes in TU ($"0.7). C, Scatter plot showing the correlation of CD163 and MRC1 mRNA
levels in TAM (combined) with SEMA7A mRNA expression in TU. D, Analysis as in (b) for genes encoding secreted proteins other than growth
factor or cytokine ligands. E, Analysis as in (b) for inversely correlated genes ($$-0.7). F, Scatter plot showing the inverse correlation of CD163
and MRC1 mRNA levels in TAM (combined) with SPINK5 mRNA expression in TU. C, F, The diagonals represent linear regression lines. ****p $
0.0001; ***p $ 0.001; **p $ 0.01; *p $ 0.05. Blue dots represent spheroids from different patients. Other colors represent patients with more
than one type of spheroids, differing in ploidy and/or size (identical colors indicate matched samples from the same patient). A complete list
of all correlating genes is shown in supplementary Data set S19.
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sponses (41). Our data show that TAT are a major source of
checkpoint regulators: PD-L1 is derived from both TAM and
TAT, whereas CTLA4 and LAG3 are selectively synthesized by
TAT.

- Immunoligands—The proteases ADAM10, ADAM17 and
PDI6, produced by all cell types, mediate the shedding of
membrane-bound immunoligands (e.g. MICA, MICB), thereby
producing molecules that inhibit stimulatory receptors on NK
and T cells (e.g. NKG2D) (64, 65).

Intriguingly, our analyses uncovered an extensive signaling
network of axon guidance molecules (AGM) of the ephrin
(EFN), semaphorin (SEMA), and slit (SLIT) families and their
cognate receptors, Eph (EPHA, EPHB), plexins (PLXN), neu-
ropilins (NRP), and robo (ROBO). Although there is plenty of
evidence that these axon guidance molecules play important
roles in the microenvironment of multiple cancer types (66–
69), very little is known about their potential functions in
ovarian cancer. Our data show that Slit2 is selectively ex-
pressed in TU, and that this expression correlates with the
bTAM phenotype. Interestingly, it has been shown that Slit2
exerts inhibitory activity on chemokine-induced migration of

lymphocytes, and that this effect is mediated by Robo1 (70,
71), which we find to be expressed on all cell types of the
HGSOC microenvironment. In colorectal carcinoma cells,
Slit2/Robo1 signaling promotes degradation of E-cadherin,
EMT, tumor growth and metastasis (72). Of note, SLIT2 also
stimulates angiogenesis via Robo1 and Robo2 in the mouse
retina (73). Among the semaphorins detected in TU, we found
Sema3C and Sema7A to be associated with surrogate mark-
ers of adverse patient prognosis. In line with this, Sema3C
has been reported to promote survival and tumorigenicity of
glioma stem cells in an autocrine/paracrine manner (74), and
to enhance adhesion, migration and invasion of breast can-
cer cells (75, 76). Additionally, tumor-promoting functions
have been described for Sema7A in breast cancer. Mecha-
nistically, Sema7A seems to act both on tumor cells to
increase invasion as well as on TAM to induce the release of
proangiogenic molecules (77, 78). Overall, our study impli-
cates an AGM network in central processes of ovarian can-
cer biology.

A striking feature of our proteomic data is the presence of
virtually the complete complement system, including all se-

FIG. 8. Schematic representation of key intercellular communication pathways in HGSOC ascites. gTAM (CD163low) produce factors
that recruit and activate T cells (CXCL9–11, IL-15), consistent with their association with a favorable clinical outcome (15) and the up-regulation
of interferon signaling in gTAM(99), possibly triggered by IFN! from T cells. In contrast, bTAM (CD163high) secrete proteins promoting cancer
cell stemness and angiogenesis, in line with the association of bTAM with a short survival. Cancer cells in patients with bTAM produce
additional stemness-promoting factors (SEMA, SLIT). Both, gTAM and bTAM, as well as TU, produce a plethora of additional factors that
reprogram immune cells to be immunosuppressed, immunosuppressive and protumorigenic. The latter include partly cell type-selective sets
of ECM remodeling proteins secreted by TU and TAM. EC: endothelial cell; MPH: macrophage; T: T cell; TIC: tumor-initiating cell; AGM: axon
guidance molecules; Met: metastasis; ECM: extracellular matrix.
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creted classical complement proteins (C1-C9 with C5 only in
secretome) and 9 out of 10 complement receptors (CR2 not
found in the receptome). Furthermore, multiple proteins func-
tioning as complement regulatory factors or involved in non-
classical complement activation were readily detectable, such
as complement factors B, H, I, and P as well as ficollins 1, 2,
and 3. TAM play a prominent role within this network as the
major producers of most soluble factors and receptors. These
observations are intriguing in view of a large body of evidence
implicating the complement system in cancer growth and
progression, apart from its canonical role in immune defense
(79–84). Complement components have been demonstrated
to promote angiogenesis, cell proliferation, cellular survival,
extracellular matrix degradation, tumor cell invasion and mi-
gration (84), and chemotaxis of mesenchymal stem cells into
the tumor microenvironment (85). Moreover, complement
components interfere with cancer immune surveillance. De-
spite the detection of all soluble complement components in
the HGSOC microenvironment, our data suggest that tumor
cells are spared from complement attack because of the
presence of inhibitory receptors and membrane-bound com-
plement regulatory proteins, such as CR1, CD46, CD55, and
CD59, which, however, have been shown to not block the
protumorigenic effects of complement (86).

As the sample sizes of our proteotranscriptomic study do
not allow for the analysis of potential associations with clinical
outcome, we sought to address this issue by using surrogate
markers of RFS. The only established prognostic markers for
cells in ovarian cancer ascites are the surface expression of
CD163 and CD206 in TAM (13–15). By applying Spearman
correlation analysis, we were able to identify sets of protu-
morigenic genes in bTAM and of tumor-suppressive genes in
gTAM (Fig. 8 and supplemental Fig. S11). Our data show that
bTAM preferentially express growth factors and cytokines
known to promote ovarian cancer growth, progression and
relapse, such as CCL18, but also factors, which have previ-
ously not been implicated in ovarian cancer progression, e.g.
KITLG and complement factors. CCL18 levels in tumor tissue
are associated with metastatic spread and a shorter survival
in ovarian cancer patients, which appears to involve an in-
crease in mTORC2 signaling (87). Although this study, how-
ever, described expression by tumor cells, a previous report
concluded that CCL18 was selectively expressed by tumor-
associated host cells with macrophage morphology (88). Our
own data (Fig. 5A) clearly support the latter observation.
CCL18 has also been linked to pancreatic carcinoma, where
it promotes EMT and cancer cell invasion (89), processes that
are also instrumental in ovarian cancer spread. Furthermore,
CCL18 secreted by TAM has previously been reported to
promote angiogenesis and metastasis formation in breast
cancer (90, 91), consistent with our findings for HGSOC. The
selective expression of KITLG by bTAM is intriguing in view
of its function as a stemness-promoting factor and the
previous identification of its receptor CD133 as a marker for

ovarian epithelial stem cells in the mouse (92) and for cancer
stem cells in ascites (93, 94). CD133 expression has also
been shown to promote ovarian cancer metastasis and
resistance (92, 95, 96), and is associated with a worse
clinical outcome (97). Moreover, bTAM also overexpressed
a number of proteins associated with the ECM or its restruc-
turing, including ECM degrading proteases, suggesting that
bTAM play a particular role in assisting cancer cell adhesion
and invasion.

GO enrichment analysis showed a strong association of the
gTAM expression signature with “regulation of T-cell che-
motaxis.” Mediators of relevance in this context are the
chemokines CXCL9, 10 and 11, a major effect of which is the
chemoattraction of effector memory T cells. This is consistent
with the known strong association of a favorable clinical out-
come of ovarian cancer with the intratumoral presence of T
cells (17), the clinical benefit of a PD1 checkpoint blockade in
a subset of ovarian cancer patients (98), the up-regulation of
IFN signaling in CD163! TAM (99), and the observed prefer-
ential synthesis of IL-15 by gTAM (Figs. 6C, 6E, 8 and sup-
plemental Fig. S11). IL-15 promotes the effector functions of
both CD8! T cells and natural killer (NK) cells and thus plays
a pivotal role in cancer immunosurveillance (100, 101). Our
data also reveal that gTAM express higher levels of LIGHT
(TNFSF14), a TNF superfamily member that interacts with
tumor-associated myeloid cells, NK cells, T cells and tumor
cells through its receptors, CD270 and lymphotoxin ", to
augment the recruitment, retention and activation of effector
cells, resulting in strong antitumor responses (102). Another
TNF superfamily member found to be synthesized selectively
by gTAM is TRAIL (TNFSF10), which is known to have direct
suppressive effects on tumor cells by inducing cell death
(103). Taken together, our findings clearly suggest that bTAM
and gTAM have opposing functions in ovarian cancer pro-
gression, with bTAM promoting tumor cell adhesion, invasion,
survival and stemness, and gTAM contributing to a better
clinical outcome by attracting and enhancing the activation of
cytotoxic immune cells.

In this context, it is important to note that antibody or small
molecule drugs inhibiting the functions of many of the (poten-
tially) relevant signaling axes identified in the present study
already exist. These include pathways and mechanisms not
yet clinically addressed for HGSOC. This raises the possibility
to achieve a rapid clinical translation for pathways that prove
to be functionally relevant in follow-up studies of the present
work. Furthermore, multiple pathways identified in this study
are driven by ligand-receptor interactions and/or ligand-gen-
erating enzymatic reactions, and thus are amenable to phar-
macological interference by future drugs.

This first proteotranscriptomic characterization of the ovar-
ian cancer microenvironment will serve as a public resource
and provide a framework for further functional analyses. Our
study identifies intercellular communication networks in the
ovarian cancer microenvironment, and uncovers associations
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of cell type-specific expression signatures with clinical
outcome.
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